ENTHOUGHT

SCIENTIFIC COMPUTING SOLUTIONS

The Enthought Developer
Tool Suite

David C. Morrill, Enthought, Inc.

Version 1, 22-Dec-06

© 2006 Enthought, Inc.
All Rights Reserved.

Redistribution and use of this document in source and derived forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source or derived format (for example, Portable Document Format or
Hypertext Markup Language) must retain the above copyright notice, this list of
conditions and the following disclaimer.

Neither the name of the Enthought nor the names of its contributors may be used to
endorse or promote products derived from this document without specific prior written
permission.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

All trademarks and registered trademarks are the property of their respective owners.

Enthought, Inc.

515 Congress Avenue

Suite 2100

Austin TX 78701
1.512.536.1057 (voice)
1.512.536.1059 (fax)
http://www.enthought.com
info@enthought.com

http://www.enthought.com/
mailto:info@enthought.com

Table of Contents

1 INtroducCtioneciiiciiiiiiiiniiicinncnncnsescsnesesesesssssssesees 1
1.1 Adding the Tool Suite to an Envisage Application.................. 1
1.2 Using the PIug-ins........ccoeeviviiiniiiiiniiiniiiciccieciecceeeee 2

2 The Developer Tool Suite Plug-ins........coceceeeurcrescrcnnncsnncrennencnnes 4
2.1 Application MONitor ... 7
2.2 Break POINtScoeeeiiiieieieieeeseeceeeeeeese et 9
2.3 Class BIOWSET ...c..ccevuerieiriirieieiieieteteiesteeeeesiete et 12
2.4 Envisage Browser.........ccoiiviiiiiniiiiniciiccce, 13
2.5 Favorites BrOWSETcccccociviiniiiiiniiniiiiiniciecicnccecneeeeiens 13
2.6 FBI VIEWETccuiiiiiiiiiiiiiiiticiceceecteteetce et 15
2.7 File BIOWSET ...ccveuiiiiriiiciniiicteiteetceeestete et 18
2.8 File Space.......cccooeiiiiiiniiiii 20
2.9 LISEENET .cuviiiiiiiiiiiiiiciiicc s 22
210 LOZZOT .ttt 25
2.11 ODbJect SOUICEcuovuiiiiiiiiiiiiciice s 28
2.12 Object VIEWET ... 29
2. I3 PrOfiler et 31
2.14 Profile VIEWETcouiiiieiiriiicictetetceieseeesete et 33
2.15 Syntax Checker ... 36
2.16 Traceback VIEWETccceerueiririenieinierieeeereeeneseeeeeeeeenes 38
2.17 Traits UIDBoouciiieiieiicicccctcetecteetsteeeeveeseeveenes 41
218 UI DEDUZEETovviiiiiiiiiiiiciiccci s 42
2.19 Universal INnSpector ..o 45
2.20 VIeW TeStercccvviiiiiiiiiiiiiiiiciciicicciccitcceceeee s 47
221 WIretap c.ooueveveiicieieiccct s 49

22-Dec-06 i

1 Introduction

The Enthought Developer Tool Suite is a collection of Envisage plug-
ins intended to make the development and debugging of Envisage-
based applications easier for developers.

The plug-ins heavily use the DockWindow features capability, and
in fact were originally developed as a test bed for exploring the
design space that the feature API provides. However, the resulting
collection of finished plug-ins proved so useful that they are being
released as an independent package themselves.

Note that the Enthought Developer Tool Suite should not be confused
with the Enthought Tool Suite, which is the general term used to
describe the entire code base that spans the spectrum of
Enthought’s open source tools and packages. The Enthought
Developer Tool Suite focuses solely on developer-oriented tools for
use within Envisage Workbench-based applications.

A secondary goal of the tool suite is to also provide interesting
examples of how to design and use features based on the
DockWindowFeature API. Curious developers are encouraged to
study the source of the tools in the package
(enthought.developer.tools), and to learn more about the feature
architecture in The DockWindowFeature DockWindow Feature
documentation and source (enthought.pyface.dock.features).

1.1 Adding the Tool Suite to an
Envisage Application

The tool suite includes two plug-in definition files that can be
included into the plug-in definitions file for your Envisage
application. A partial listing of a sample Envisage plug-ins
definition file which includes both plug-in definition files is shown
below:

22-Dec-06 1

The Enthought Developer Tool Suite G ENTHOUGHT

from os.path import abspath, dirname, join

Package location:
enthought = abspath(dirname(enthought.__file__))

The plugin definitions required by the application:
PLUGIN_DEFINITIONS = [
Your application plugins:

Enthought developer tool suite plugins:
jJoin(enthought, “developer/plugin_definition.py”),

Enthought FBI1 debugger plugin:

join(enthought, “developer/fbi_plugin_definition._py”
)1
1

Plug-in definitions that we want to import from but
don®t want

as part of the application:

INCLUDE = []

Including the plugin_definition.py file adds the following
items to your application:

All of the developer tool suite plug-ins.

All of the DockWindow features used by the plug-ins.

A new Developer Tools perspective.

A Developer Tools menu on the main application men bar.

Including the fbi_plugin_definition.py file adds a hook that
allows the FBI (Frame Based Inspector) debugger to handle
unhandled exceptions that occur in your application.

If for some reason you do not wish to include all of the plug-ins,
simply copy and paste the ones you wish to use into a new plug-in
definition file and include that file instead.

1.2 Using the Plug-ins

Once the plug-ins have been added to your Envisage application,
they appear on the View menu of your main application tool bar,
as shown in the following figure:

2 22-Dec-06

ENTH HT)
G oue Introduction

View Developer Tools H

Perspectives 4

Python
Universal Inspector
Object Source
Class Browser
Fawarites Browser
LI Debugger
File Space

v File Browser
Syntax Checker
View Tester
Traceback Viewer
FEI Viewer
Traits UL DB

v Application Manitor
Logger
Wiretap
Listener
Object Viewer
Envisage Browser
Profiler
Profile Viewer
Break Points
File Information

v Input Mumber

v Convert Number

In this figure, the developer tool suite plug-ins are shown shaded in
grey. Selecting or unselecting a plug-in on the menu adds or
removes the tool from the current perspective. You can then
reposition or resize the tool using the standard DockWindow
splitter bars, drag bars and notebook tabs.

If you like, you can also switch to the supplied Developer Tools
perspective by selecting it from the View > Perspectives menu, as
shown below.

View Developer Tools H

Python |

22-Dec-06 3

The Enthought Developer Tool Suite G ENTHOUGHT

2 The Developer Tool Suite
Plug-ins

The following sections describe the function and use of each of the
developer tool plug-ins. The information includes:

¢ What the tool does and how to use it.

e Screen shots of the tool in use.

e Tips on how to use the plug-in in combination with other plug-
ins.

The last item is especially important, because very few, if any, of
the plug-ins are designed to be used in isolation. Each tool typically
performs one or two functions, but is written so that it can be easily
connected to other tools. In many ways, the underlying model is
much like the UNIX philosophy of “small, sharp tools”, which have
well-defined functions and support myriad ways of recombining
them to create new, more powerful tools.

Here is a list of the tools and a synopsis of what each one does:

e Application Monitor: Displays top-level Envisage application
objects.

e Break Points: Manages all currently-set debugger breakpoints.

e Class Browser: Displays module, class, and method
information.

e Envisage Browser: Displays Envisage plug-in information.

e Favorites Browser: Displays names of commonly used files.

FBI Viewer: Displays Python source code and allows setting

breakpoints.

File Browser: Displays a file system hierarchy.

File Space: Displays a union of disjoint file system hierarchies.

Listener: Displays all listeners for a specified trait.

Logger: Displays and filters log messages.

Object Source: Displays the source code for a specified object.

Object Viewer: Displays the contents of Python objects.

Profiler: Profiles the execution of specified methods.

Profile Viewer: Displays the results of profiled execution.

Syntax Checker: Checks a Python source file for syntax errors.

Traceback Viewer: Displays an exception traceback.

4 22-Dec-06

G ENTHOUGHT

e Traits UI DB: Displays the contents of the Traits Ul data base.

e Ul Debugger: Displays the window object hierarchy for a
specified window.

e Universal Inspector: Displays Python object data or file
contents.

e View Tester: Testing harness for Traits Ul views.

e Wiretap: Sets breakpoints on trait changes.

The Developer Tool Suite Plug-ins

The following table lists the types of objects that the various tools
operate on. “Drag Source” and “Connect From” indicate the types
of data that a tool can send to another tool; “Drop Target” and
“Connect To” indicate the types of data that a tool can receive from
another tool.

Table 1 Types of data displayed and shared by Enthought Developer Tools
Tool Displays | Drag Source | Drop Target | Connect From | Connect To
Application |Python Python
Monitor objects object
Break Points | Breakpoints |File position File position
Class Packages, File position File position
Browser modules,
classes,
methods
Envisage Application
Browser object,
extension
point, query
result
Favorites Modules, File position |Python file |File position
Browser classes,
methods
FBI Viewer |Source code |File name File position
File Browser |Directories, |File position, File position,
files file, path, tile, path,
directory directory
File Space |Directories, |File position, File position,
Python files |file, path, tile, path,
directory directory
22-Dec-06 5

The Enthought Developer Tool Suite

c ENTHOUGHT

Tool Displays | Drag Source | Drop Target | Connect From| Connect To

Listener Listener File position, | Trait File position |Trait

objects selected

object
Logger Log messages File position File position,
traceback text

Object Modules, File position | Traited Traited Traited
Source classes, object object, file object

methods position
Object Traited Traited Traited
Viewer objects object object
Profiler Methods Results file |Class, Results file Class,

name method name method

Profile Profiler Results file Result entry | Profiler
Viewer results position results file
Syntax Python Python file |Python file Python file
Checker source code
Traceback Tracebacks Traceback Traceback |File position |Traceback
Viewer file position text
Traits Ul DB | Traits Ul Selected Selected

database value value

items
Ul Selected Window Selected
Debugger object object value
Universal |Python Object, file | Python Python object | Python
Inspector objects, name object or or value object or

pickled value value

objects,

binary files,

text files
View Tester |Traits Ul Python file

views
Wiretap Wiretap Trait

breakpoints

6 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

2.1 Application Monitor

The Application Monitor displays the contents of each Python
object bound to a View or Editor in the containing Envisage
Workbench window. In practice, this typically means that it
displays the contents of all objects used to create an Envisage view
using a UOL (Universal Object Locator) value. Here is a screen shot
of a typical Application Monitor view:

EE’ Application Monitor

=I5 List(S)
-4 [0]: FileBrowser (0x028E4930)
Jdirectory: u'c:Yevnnew \enthought\lsrc\Yibenthoughtl\developer\itoalsiY [54]
file_name: " [0]
file_position: Mone
.id: "enthought. developer. tools. file_browser.state’ [44]
path: u'c:Vsvnnew\enthoughtisrcillib\ienthought\\developeritoolsty [54]
.root: RootMode(0x028F 55A0)
root_path: u'c:\isvnnew\\enthoughtisrcilibY\enthoughti\developeritools' [53]
.selected: RootMode(0x025F5540)
: Universallnspector {(0x024F 2050)
.id: 'enthought. developer, tools, universal_inspector.state' [51]
.inspectors: List(1)
Jitem: Mane
Jmax_inspectors: 50
: InputMumber (0x028EB050)
wvalue: 265311
: ConvertMumber(0x025BBDS0)
.number: 265311
text: 'two hundred sixty-five thousand three hundred eleven’ [52]
: Application{0x025FBOFD)

T

|
¥ e E
Do o=sdOsroo0o0oo

=+ |
s e
=00 0OH

22-Dec-06 7

The Enthought Developer Tool Suite G ENTHOUGHT

The following screen shot shows the Envisage workbench
application window that the Application Monitor in the previous
screen shot is monitoring. Each view (top-level tab) in the
Workbench window is represented by a top-level node in the
Application Monitor.

% Workbench

File View Developer Tools Help

[@ U ¥ File Browser I i Application Monitor l O &0 [¥| Universal Inspector l

qj c:isvnnew\enthoughtisrcli ~ [@ dass_browser.py l

+ -] envisage_browser

+ ﬂ.ﬂ images | - '-,svnnew'n,enﬂﬁought'n,src'n,lib'n.enﬁﬁought'n,developer'n,toolsi
[2 _init__.py
[£] _init__.pyc 1 ~
D app_monitor.py E =
[=] app_monitor.pyc 34 Implements a Python cla
Edass_hrnwser.py 4¥ for other Python-based

class_browser.pyc — -n

] favorites_browser.py a; Written by: David C. Mol
D favorites_browser.pyc < | N 3 —
[2] fi_plugin.py — =
[2] fi_plugin.pyc
[2] fi_plugin.py~
[fi_viewer.py [L) Input Number]
[2] fbi_viewer.pyc
[2] file_browser.py Value: |265311
[2] file_browser.pyc
[£] file_dropper.py
D ﬁlE_ljrl:ll:lFIEr.l:l'ﬁl'E [.:;_‘.:' Corvert Mumber l
L = [T S Z

< | » Text: two hundred sixty-five thousand three hundred eleven

Clicking the options icon () on the Application Monitor tab
displays the following dialog box:

E Application Monitor Options E'
View style -

QK | Cancel |

This dialog box allows you to choose between showing all of the
objects in a single tree view as individual elements within a top-

8 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

level list (as shown in the first screen shot), or as separate pages in a
notebook, as shown in the following screen shot:

.f-}' Application Monitor

FileBrowser & | UniversalInspector [|| Inputhumber (3 | ConvertMumber [|| Application £

= FileBrowser(0x028E4930)

Jdirectory: u'c:Vevnnew\enthoughtsrciiibYienthought\\developer\\toolsty [54]
file_name: " [0]

file_position: Mone

Jid: 'enthought. developer, tools. file_browser.state' [44]

Jpath: u'c:Yisvnnewenthoughttlsrc\libYenthought\developer \toolsty [54]
root; RootMode(0x028F5540)

sroot_path: u'c:VisvnnewYenthoughtiisrc\libVYenthought'\developeriitools' [53]
selected: RootMode(0x028F5540)

¥

erdOFO0O00O0O

¥

When in notebook mode, you can delete any object from the view
by clicking its tab’s close icon ().

You can update the contents of the tool when new views are added
to the workbench window by clicking the refresh icon () in the
Application Monitor tab.

All tree-view items within the tool are draggable. For example, you
can drag an object contained in the view to the Object Source tool in
order to view the source code of the object’s class.

2.2 Break Points

The Break Points tool allows you to manage all of the breakpoints
currently set in your code. Here is a screen shot of a typical Break
Points view:

22-Dec-06 9

The Enthought Developer Tool Suite G ENTHOUGHT

@ w0 & Break Points

—
el

Module | Line | BP Type | Condition |Enabled|Hits |Count|lgnore Source
file browser 262 |Breakpoint False 0 0 0 ifisinstance| selec
file browser 263 Print selected file[True] 3 0 0 selfdirectory = se
file browser 267 Count True g g 0 self path = selecte

The view shows a table of all current breakpoints, which contains
the following columns:

e Module: The name of the module that contains the breakpoint.

e Line: The number of the line of the module that the breakpoint
is set on.

e BP Type: The type of the breakpoint, which can be one of the
following values:

0 Breakpoint: Stops execution each time the breakpoint is hit.

0 Temporary: Stops execution the next time the breakpoint is
hit, and then removes the breakpoint.

0 Count: Counts the number of times the breakpoint is hit, but
does not stop execution.

0 Trace: Executes the contents of the Condition field each time
the breakpoint is hit, but does not stop execution.

0 Print: Prints the current value of the Condition field each
time the breakpoint is hit, but does not stop execution.

0 Log: Logs the current value of the Condition field each time
the breakpoint is hit, but does not stop execution.

e Condition: An optional Python expression or statement that
affects the handling of the breakpoint. The handling of the
condition depends upon the value of BP Type as follows:

0 Breakpoint, Temporary, Count: An expression that must
evaluate to True in order for the breakpoint to be hit or
counted.

0 Trace: A Python statement that is executed each time the
breakpoint is hit.

0 Print, Log: An expression that is evaluated and printed or
logged each time the breakpoint is hit.

10 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

e Enabled: If True, the breakpoint is enabled; otherwise it is
disabled and has no effect.

e Hits: The number of times the breakpoint has been hit.

e Count: The number of times the breakpoint has been hit (only
changes when the BP Type is Count).

e Ignore: The number of times the breakpoint will be ignored
before it is triggered.

e Source: The content of the line that the breakpoint is set on.

You can change the BP Type, Condition, Enabled and Ignore
fields in the tool by clicking the field and entering a new value.

To delete an individual breakpoint, select its row in the table and
click the Delete row icon (i) in the table toolbar. To delete all
breakpoints at once, click the dispose icon (¥) on the Break Points
tab.

Changes to the breakpoints are persisted immediately. If you run
the Envisage application at a later time, you will still have access to
all of the breakpoints that you previously set. However, the
breakpoints are not automatically loaded when the application is
started. This behavior allows you to run the application normally,
without constantly popping into the FBI debugger. To reload any
previously set breakpoints, do one of the following:

e Click the reload icon (") on the Break Points tab. If the icon is
not present, the breakpoints have already been loaded.

e On the Developer Tools > Debug menu, select Restore break
points.

If you wish, you can sort the breakpoints in various ways by
clicking the column header of the field you wish to sort on. To sort
in the opposite order, click the same column header again. You
remove sorting by clicking the Unsort icon (&) in the table toolbar.

You can reorganize, delete, and add table columns by clicking the
user preference icon (I#) in the table toolbar, and modifying the
structure of the table using the dialog box that appears.

Each time you select a breakpoint in the table, you also select its
corresponding source code file position. You can provide this
information to other tools by dragging the drag icon (®) and
dropping it on another tool, or by connecting the current source

22-Dec-06 11

The Enthought Developer Tool Suite G ENTHOUGHT

code file position to another tool by dragging or clicking the
connection icon («¥). Both icons are located on the Break Points tab.

For example, if you forget the details of where particular
breakpoints are set, you might want to connect the Break Points
tool to the FBI Viewer so that you can view the corresponding
source code by clicking breakpoints in the Break Point tool.

2.3 Class Browser

The Class Browser tool displays a tree view of the source code in
your Python path; each root in the Python path expands to the
module, class, and method levels. A screen shot of the Class
Browser in use is shown below:

@ U Class Browser

+--[5l debug e
=1l developer
+-- |5 helper
+- [l services
=[5l tools
+- [l envisage_browser
@ _init_
+ lﬁ’ app_maonitor
) dass_browser
- (@ CBClass
iﬂ _descriptor_changed
iﬂ _get_file_position_info
iﬂ _get_path
iﬂ _get_text w

Each time you start the Class Browser tool, it scans your Python
path, analyzes all of the Python modules it finds, and stores the
results in a database. Starting for the first time in a session takes the
longest time, because the database does not exist and must be built
from scratch. Thereafter, the process is usually much faster, because
the tool needs to analyze only new or changed source files. The
scanning process is also performed periodically as long as the Class
Browser view is open.

12 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

Items in the Class Browser, such as modules, classes, and methods
can also be supplied to other tools using one of the following
techniques:

e Drag an item in the tree view and drop it on another tool, such
as the Universal Inspector.

¢ Select an item in the Class Browser tree view then drag the
browser’s drag, ®, icon and drop it on another tool.

e Connect the Class Browser to another tool by dragging or
clicking the connect icon («¥) in the Class Browser tab. After
that, when you select items in the Class Browser tree view, the
Class Browser automatically sends the selected item to the
connected tool.

2.4 Envisage Browser

TO BE WRITTEN...

2.5 Favorites Browser

The Favorites Browser tool displays a list of your “favorite” Python
modules using a class browser style tree view of modules, classes,
and methods. Developers often work on a small subset of files,
perhaps stored across several different packages. The Favorites
Browser allows this current working set of files to be organized into
a single view. The following screen shot shows an example of the
Favorites Browser in use:

22-Dec-06 13

The Enthought Developer Tool Suite G ENTHOUGHT

[O zQ Faworites Browser

i[] Favorites
- @ fbi
+-{& Breakpoints
—|-{&@ DataWatch
'i'i'l _expression_changed
) _object_changed
+-{& FeI
+-{& FBIBdb
+-{& FBIInvoker
(® reModule
(® revalue
+-{& FBIWiretap
+ - stackFrame
+-{& wiretap
+ (@) dass_browser
+-{@ app_monitor

To add Python modules the Favorites Browser, drag them from any
file source and drop them on the drag and drop icon (@) in the
tool’s tab. To delete modules from the view, right-click the module
in the browser view and click Delete on the shortcut menu:

Cut
Copy

Rename

By default, the Favorites Browser displays the ten most recently
added Python modules. To change the number of items, click the
options icon () in the browser tab, which displays the following
dialog box:

E Favorites Browser Options

Maximum number of favorites: | 10

L [E3

QK | Cancel

Change Maximum number of favorites to a new value in the range
from 1 to 50, and then click OK.

14 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

Selecting any item in the browser’s tree view also selects a
FilePosition object that describes the section of Python code that
corresponds to the item (i.e., module, class or method). You can
make this FilePosition available to other tools by doing one of the
following:

e Drag the browser’s drag and drop icon (@) and drop it on
another tool that accepts FilePosition information, such as the
FBI Viewer.

e Drag or click the browser’s connect icon (#¥) and connect the
browser to another tool that accepts FilePosition information.

2.6 FBI Viewer

The FBI Viewer (Frame Based Inspector Viewer) displays Python
source code and allows setting and removing breakpoints within
the code. Here is a screen shot of the FBI Viewer in use:

- :
o &) FBEI Viewer

@ EiePositon £ | @ _update_editor 0 | @ _chidren_replaced (0 | @ comect_from [

c: iEvnnew fen thoughitsrc b en thought oy face \dodk features \oornect_featre.py |

Breakpont Modifiers

For fes objectonly: [Type: [Bresipont +| Condition: Sat |
733 B i e e e e e e . e e e e e e e . e A
T34 ¥ Coplesa a value fror bjectl T I |
735 -

1386

737 dal l.'l.iI:I.:Il'.'l:T._Erl.'rJ { s=1f, wvalus }:

138 “S¥ Copies a value from objectl to objecci.

739

740 1f not self. frozent

T41 aplf, frorsn = Trus

T42 try:

T43 setattr{ self.objecti, self.namel, wvalue)

T44 except:

T45 pass

746 aelf. frozen = False w
L 4 ¥

You can specify the Python source code to display by connecting
the FBI Viewer to a tool that supplies source files, such as the File
Browser, Class Browser, Object Source or Listener tools.

22-Dec-06 15

The Enthought Developer Tool Suite G ENTHOUGHT

Each new source file or file fragment that you add to the viewer
creates a new sub-tab for displaying the source code. Each sub-tab
contains:

e A message bar at the top displaying the fully qualified name of
the source file.

e A set of controls for adding and removing breakpoints.

e A read-only text area for viewing the source code and selecting
breakpoints.

You can close any sub-tab by clicking its close icon (), and you can
drag the source code object to another tool by dragging the sub-
tab’s drag icon (®).

To set breakpoints, select the appropriate source code line, and then
click Set. To remove a breakpoint, select a source code line that has
a breakpoint in place, and click Reset.

The FBI Viewer supports several different types of breakpoints:

e Breakpoint: Stops execution when the breakpoint is hit.

e Temporary: Stops execution when the breakpoint is hit, then
removes the breakpoint.

e Count: Count the number of times that the breakpoint is hit, but
does not stop execution.

e Trace: Executes the Python statement specified by Condition
each time the breakpoint is hit, but does not stop execution.

e Print: Prints the value of the Python expression specified by
Condition each time the breakpoint is hit, but does not stop
execution.

e Log: Logs the value of the Python expression specified by
Condition each time the breakpoint is hit, but does not stop
execution.

To specity the breakpoint type, select it in the Type list.

The contents of the Condition field are used differently, depending
upon the type of breakpoint set:

e Breakpoint, Temporary, Count: An expression that must
evaluate to True in order for the breakpoint to be hit or counted.
No value specified means the breakpoint is always hit.

16 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

e Trace: A Python statement that is executed each time the
breakpoint is hit.

e Print, Log: A Python expression that is evaluated and printed or
logged each time the breakpoint is hit.

You can select For this object only if you want the breakpoint to be
triggered only for the specified object. This option is available only
when the source code supplied to the FBI Viewer has an associated
object. For example, the Listener tool creates FilePosition objects
with the listener object attached to it.

When a Breakpoint or Temporary breakpoint is triggered, the FBI

debugger is displayed, as shown in the following screen shot:
E FBE: Frame Based Inspector

S
| =
Sien Mextt Return Go GQuit
B | B | B Do | os |
Stk Frames | @ ol W @ Bresk Points | DataWakthes | Watch values | @ of' & Class Browser | i of @ Object Sowree | @ o (] @ Favenbes Browser |
Function | File Hame Fie Path | Lee | i)
feoanect_from |connect_festure py cswnew'enthoughtissr 740 d ot sell_frozen
dispatch trast_notiers. py cimnnew'enthoughtisec 367 handied("args |
ngbind_call_1 braal_mobdars, pry ¢ wmnewtonthoughtisie 422 soll dispatch getatts] sell objoct(), solf namae), new)
_salectid_changed ohjic]_Souite fy ¢ unmnewlenthoughtiare 130 obgect = sell abpset |
call 2 traet_miotiders pry clmmneaenthoughtisse 325 sell handien objecl new)
_editon_trail_moddied editor. py clomnewienthoughtisse 352 selatir| user_cbject used_name, new |
dispatch tras_motiiers py cimmnew'enthoughtisee 455 | handler *args |
rebind_call_4 trat_motifiers py covmnestenthoughtisee 443 object, trait_name. old, new) w
L] ¥
Local Variables | pythom Shed -:‘E.ﬂm'.-'eu
Name Type { LTI on_tree_pel_changed O | @ & conne
hll aigument <enthought pyface dock features conne |
walen mgumend <gnthoughl dieloper hilper Bla_posito | ic'-?r&mnﬂ'h'hmd:-'.__nt,ﬂur]
2 = Br et Modfiers
= : For thischiect ondys T Types [Bresiport. = | Condtions
“Varabe Vs
243 self. _checkDpen() -
= ~ 244 ratorn s=lf.db.keys{)
= b [eelf]: Cornmcton T aB0TED) 145
@ ._fores: Faise 246 daf bas_key(self, key):
O .connection: ‘from' [4 747 =self. checkOpen()
+ e Sesture b ConnettFeature (o8 1A 3N 48 ratarn self.db.has loey (key)
+ b Seatred: ConnectPesture (Tl 40 4%
[.lshedn: ‘Obgect Source’ [13] 250 daf sat location (aelf, key):
@ Ashefls PRI vewer [10] 251 :ELE. checkipeni)
@ .rameL: fie_postar’ [15] FLE self. sheskfusses()
O neme: M-P'W‘m Ul: 53 ratorn aelf. dbo. :E':_:u.zr;eﬂ:eﬂn
§k objectl: DbjectSowre(Tn028-0ED) 284
¥ g '““ﬁf’_"’r;’”:""’a’sﬂ’ 255 def next(self):
Y Bl Y i
. e e .
o g [eakal: e T AT 3 - self. checkCursocr |} .
% T R S ¥

22-Dec-06 17

The Enthought Developer Tool Suite G ENTHOUGHT

Refer to the FBI debugger documentation for more information on
how to use it.

You can view information generated by Count breakpoints using
the Break Points tool, log messages generated using Log
breakpoints using the Logger tool, and information generated by
Trace and Print breakpoints by using the standard Envisage
Python shell.

By default, the FBI Viewer shows a maximum of 50 source code
tabs at one time. You can change this value by clicking the viewer’s
options icon (), which displays the following dialog box:

B FBI Viewer Options E|
Maximum number of open viewers: | 50 ﬁ

QK | Cancel |

Change Maximum number of open viewers to whatever value you
like, and then click OK. When you open a new tab that would
exceed the maximum value, the oldest tab is automatically closed.
If you specify a maximum that is smaller than the current number
of open tabs, the tool closes the required number of oldest tabs.

2.7 File Browser

The File Browser tool shows a hierarchical tree view of all or part of
the file system. Here is screen shot of the File Browser in use:

18 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

P « File Browser

I.Lj c:isvnnew'\enthoughtisrclib\enthoughti\developer S
+ -] helper
=] services
[=] _init__.py
[2] _init__.pyc
[=] file_watch.py
[=] file_watch.pyc
+ -] tools
[] README.txt
[_init__
[_init__ |:n,-'n:
[=] api.py
[=] api.pyc
[2] fi_plugin_definition.py
[2] fi_plugin_definition.pyc
[2] numbers.py
[Z] numbers.pyc w

The main purpose of the File Browser is to act as a source of file
names and information for other tools, so it does not support any
actions, such as delete or rename, on the files or directories it
displays.

Selecting a file or directory in the File Browser makes the following
information available to other tools:

File name (when a file is selected)

FilePosition object (when a file is selected)
Directory name (when a directory is selected)

File object (when either a directory or file is selected)

You can share this information about the current selection with
other tools by doing one of the following;:

e Drag the File Browser’s drag icon (@) and drop it on another
tool.
Connect the File Browser to another tool by dragging or clicking
its connect icon («).

Any directory within the file system can serve as the root of the File
Browser view. To change the current root directory, click the
browser’s options icon (), which displays the following dialog
box:

22-Dec-06 19

The Enthought Developer Tool Suite G ENTHOUGHT

B File Browser Options |

e a ==t ol e enthoughtisrclib\enthought\developer Browse...

K | Cancel |

Type the name of the new root directory or click Browse to select a
new directory using the standard file dialog box; then click OK.

2.8 File Space

The File Space tool displays Python source files contained in
possibly disjoint parts of the file system. Here is a screen shot of the
File Space tool in use:

[@ U File Space l
o] File Space -
+ -] Developer Tools T
-] DockWindows
+- [demos
-] features
D _init__.py
[=] api.py 1
D connect_feature.py
D custom_feature.py
D debug_feature.py
D dock_control_feature.py
D drag_drop_feature.py
D drop_file_feature.py w

The first time the File Space tool is opened, the view is empty:

[@ U File Space l

o] File Space

||

To add something to it, right-click the File Space root node in the
tree view and selecting New > File Space Root on the shortcut
menu, which displays the following dialog box:

20 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

E New File Space Root

Path: |C: svnnew'enthoughtlsrclfib\enthoughtides Browse. ..

Mame; |Develnper Tools|

Ok | Cancel |

Type the path to the Python source files you want to add, or click
Browse and select the path using the standard file system dialog
box. Enter a Name to use as an alias for the path in the tree view
and click OK. A new item with the Name you specified appears in
the tree view as a child of the root File Space node:

@ g0 File Space

o] File Space A
+ -] Developer Tools

You can continue to add as many entries as you like. The entries are
persisted across sessions, so you can build up a list of favorite
source code repositories.

You can use the File Space tool as a file source for other tools by
doing any of the following;:

e Drag an item in the File Space tree view and drop it on another
tool.

e Select an item in the tree view, then drag the File Space tool’s
drag icon (®) and drop it on another tool.

e Connect the File Space tool to another tool by dragging or
clicking the tool’s connect icon («).

The File Space tool has four types of selection:

The name of the most recently selected file.

The name of the most recently selected directory.

The name of the most recently selected path (either file or
directory).

A FilePosition for the most recently selected file.

22-Dec-06 21

The Enthought Developer Tool Suite G ENTHOUGHT

Connecting the File Space tool to another tool connects one of these
selection types to the other tool. Each time you select a new item, it
is automatically sent to the connected tool.

2.9 Listener

The Listener tool displays all listeners currently associated with a
specified object trait.

Here is a screen shot of the Listener tool in use:

© 0 Listener
A
e
Class Mame | Module Mame Method Mame Line Source
TraitsMode |value tree children replaced 511 def children replaced [self)
TraitsMode wvalue tree children replaced 511 def children replaced [self)
SimpleEditor editor update editor 245 def update editor { self, objec
Connection connect feature connect from 737 def connect from [self, value)

A class derived from HasTraits can have any number of listeners
attached to each defined object trait. The listeners can be:

e Static listeners defined by the class itself using the
_traitname_changed method naming convention.

e Dynamic listeners attached by other objects using the
on_trait_change method.

e Dynamic listeners added implicitly by HasTraits through
mechanisms such as the _traitname_changed_for_object method
naming convention.

Using trait listeners is a very powerful and flexible technique for
creating robust and scalable applications. However, it can
sometimes lead to situations where hard to understand interactions
occur between various objects because of the seemingly invisible
listener connections between them.

For example, the screen shot above shows the trait listeners
associated with the value trait of the trivial InputNumber class

22 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

created as an example for one of the other sections of this
document. The four listeners displayed include:

e Listeners created by the Universal Inspector tool to monitor and
update the contents of the InputNumber object.

e Listeners created by the Traits UI TextEditor to synchronize the
contents of the trait value and the text editor control.

e Listeners created by the Connect feature to connect the value
trait of the InputNumber object to the number trait of a
ConvertNumber object displayed in a separate Envisage view.

Thus, being able to see the connections between objects can be an
important debugging or program understanding tool.

You specity the trait whose listeners you want to be displayed by
dragging an object trait and dropping it on the Listener tool’s drag
and drop icon (®). Typical sources for this type of information are
objects displayed in the Universal Inspector tool or by various
views in the FBI debugger, as shown in the following figure:

© & [¥] universal Inspector

@ InputMumber 3

| InputMumber

=i Inputhlumber (0x02804C60)
[@ .value: 925723]

This screen shot shows the trait (highlighted in red) that was
dragged to the Listener tool to create the original screen shot.

The Listener tool shows a table of listeners connected to the
specified object trait, one listener per row. Each table row can
display the following columns:

e Class Name: The class name of the listener object.

e Object ID: The object ID of the listener object.

e File Name: The fully qualified name of the source file
containing the listener object’s listener method.

¢ Module Name: The name of the module containing the listener
object’s listener method.

22-Dec-06 23

The Enthought Developer Tool Suite G ENTHOUGHT

e Method Name: The name of the listener object’s listener
method.

e Line: The line number within the source file where the object
listener’s listener method begins.

e Source: The contents of the first line of the object listener’s
listener method definition (usually a def statement).

You can reorganize, add, and delete columns by clicking the
Listener tool’s user preference icon (Fs) in the table toolbar. You can
also sort the rows by clicking the header of the column you want to
sort. Reverse the order of the rows by clicking the same column
header again. You can restore the original, unsorted order by
clicking the unsort icon (&) in the table toolbar.

Selecting a row in the table also selects the corresponding listener
object and listener method. You can access the currently selected
listener object by dragging the Listener tool’s drag and drop icon
(@) and dropping it on another tool, such as the Universal
Inspector. You can access the currently selected listener method,
represented as a FilePosition object, by dragging the Listener tool’s
drag and drop icon to another tool, or by connecting the Listener
tool to another tool by dragging or clicking its connect icon («#).
For example, connecting the Listener tool to the FBI Viewer can be
very handy for viewing and setting breakpoints in various listener
methods by selecting the corresponding rows in the Listener tool.

The Listener tool supports dragging both the currently selected
listener object and listener method FilePosition object at the same
time. The result of dropping the selection on another tool depends
upon the tool. For example, the Universal Inspector understands
both normal objects and FilePosition objects, and so adds two new
sub-tabs: one that displays the contents of the listener object, and
another that displays the source code of the listener method.
Another tool might recognize only one or the other of the two
objects, and will handle the object it understands. If a tool cannot
process either object, the invalid drop target cursor is displayed.

24 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

210 Logger

The Logger tool displays messages logged using the standard
Python library logging module. The following screen shot shows an
example of the Logger tool in use:

@ gj Logger

View: |No filter | | Results: All 18 items i
Level Message 5
ERROR [TableMadel error: Request for invalid row 0 out of 0
DEBUG window [<enthought.envisage workbench window Window object at 0x028:2
DEBUG n: 8
DEBUG result: nine
DEBUG n: 82
DEBUG result: ninety-two
DEBUG n: 925
DEBUG n: 8
DEBUG result: nine
DEBUG result: nine hundred twenty-five
DEBUG n: 9257 "

Calls to the Python logging facility are typically inserted into
source code by developers in order to capture significant program
events. They can also be inserted into code dynamically using the
FBI Viewer tool. Logging messages are divided into five categories,
or levels:

DEBUG
INFO
WARNING
ERROR
CRITICAL

The Logger tool uses a tabular format to display the logging
messages, with each row representing a single message. The table
can display the following columns:

e Level: The level of the message (e.g., ERROR).
e Message: The message logged.

22-Dec-06 25

The Enthought Developer Tool Suite G ENTHOUGHT

e Level #: The level number of the message (DEBUG = 10, INFO =
20, WARNING = 30, ERROR =40, CRITICAL = 50).

e File Name: The file name of the module that logged the
message.

e Path Name: The directory of the module that logged the

message.

Module: The name of the module that logged the message.

Line #: The line number of the call to the logging module.

Logger Name: The name of the logger object.

Process ID: The process ID of the program logging the message.

Thread ID: The ID of the Python thread that the logging call

was made from.

e Time Created: The time at which the logging call was made in
the format YYYY-MM-DD HH:MM:SS,mmm.

e Milliseconds: Millisecond portion of the time at which the
logging call was made.

e Raw Time Created: The raw time at which the logging call was
made, as returned by time.time().

By default, only the Level and Message columns are displayed.
However, you can reorganize, add and delete columns by clicking
the user preference icon (U4 in the table toolbar.

The various logging levels have a defined order of importance,
with DEBUG being the lowest, and CRITICAL being the highest.
By default, the Logger shows the 100 most recent log messages of
any level of importance. You can change these settings by clicking
the Logger’s option icon (#), which displays the following dialog
box:

/M Logger Options

Logging level: [CE - HRN

L

Max # log messages: | 100

L [LL

Ok | Cancel

You can change the Logging level to any of the five standard
levels. Only messages with the same (or higher) importance as the
Logging level are displayed.

You can also change Max # log messages to reflect the maximum
number of logging messages that can be displayed at any one time.

26 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

If that number is exceeded, the oldest messages are removed from
the list. After message have been discarded, they cannot be
recovered by increasing Max # log messages.

You can also filter the messages displayed in the Logger by creating
a custom table filter. To create a filter, select Customize in the View
list above the table. Any filter you create persists until you
explicitly delete it (even if it is not currently applied).

For example, here is a screen shot that shows the definition of a
rule-based filter:

B Edit Filter

Filter name: |message contains n:|
-
#45
or Mame Operation Value
oK | Cancel |

Here is a screen shot that shows the results of applying this filter in
the Logger tool:

| @ 0 (¥ Logger |

View: |message contains n: ﬂ Results: 7 of 35 items H
Level Message
DEBUG |n: 92572
DEBUG n: 92
DEBUG n:5
DEBUG n: 925723
DEBUG n- 925
DEBUG n: 9
DEBUG n: 7

22-Dec-06 27

The Enthought Developer Tool Suite G ENTHOUGHT

To remove the effects of a filter, select No filter in the View list.
Unlike changing the Max # log messages option, filters have no
permanent effect on the contents of the Logger table.

211 Object Source

The Object Source tool displays the hierarchy of modules, classes,
and methods for each class that a specified Python object is derived
from. Here is a screen shot of the Object Source tool in use:

@ -0 Object Source

| FileBrowser [file_browser.py] -= HasPrivateTraits[has_traits.py] -= HasTraits[has_traits.py] -» CHasTraits

file_browser.py & | has_traits.py £

(@ file_browser

+ (& BaseMode

—-{& FileBrowser
'i.’] _root_path_changed
'i.’] _selected_changed

+-{& FileNode

+- & PathMode

® Roothode

The message bar at the top of the tool shows the class (FileBrowser)
and module ([file_browser.py]), for each class an object is
derived from. Below that is a notebook with sub-tabs for each
unique source file in the object’s class derivation hierarchy.

Each notebook tab displays a tree view showing all of the classes
and methods within the corresponding Python module. Selecting
any node in the tree also selects a FilePosition object whose text
range depends upon the type of item selected:

e @ Module: Entire source file
e @ Class: Entire class definition
e U Method: Entire method definition

You can specify the object whose source you want to view by doing
one of the following:

28 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

e Drag an object from another tool or view and drop it on the
Object Source tools drop icon ().

e Connect the Object Source tool to another tool that supplies
objects by dragging or clicking the Object Source tool’s connect
icon (s¥).

Like many of the tools in the enthought.developer.tools package,
the Object Source tool is most useful when used in combination
with other tools. For example, you are trying to find a bug on one
of your Envisage views, so you might do the following:

1. Open the Application Monitor, which shows a tree of all the
views in the current application.

2. Drag the Python object associated with the view you want to
debug and drop it on the Object Source tool’s drop icon, to
display the object’s class and method hierarchy.

3. Drag the Object Source’s connect icon and drop it on the FBI
Viewer’s connect icon.

4. Select a method name in the Object Source view and set some
breakpoints in the method in the FBI Viewer.

Another related scenario is that, having finally debugged the
Envisage view, you are now trying to determine why certain
actions take so long to perform. So you again drag the view object
from the Application Monitor to the Object Source tool, but this
time connect the Object Source tool to the Profiler tool in order to
profile the action code to find where the bottleneck is.

212 Object Viewer

The Object Viewer tool allows you to display the default Traits Ul
view for a specified object derived from HasTraits. Here is a screen
shot of the Object Viewer tool in use:

22-Dec-06 29

The Enthought Developer Tool Suite G ENTHOUGHT

O -0 ¥ object viewer

AppManitor 3 | FileBrawser £

| FileBrowser

qj] c:svnnew'\enthoughtisrcllib\enthought'\developer
+- [helper
+ []_j SErvices
+- [tools
[£] README.txt
|j __init__
|j __init__ pyu:
[=] apipy
[=] api.pyc
|j fhi_plugin_definition. py
|j fhi_plugin_definition. pyc
|j numbers. py

To add objects to the Object Viewer, do one of the following;:

e Drag and drop an object with traits onto the Object Viewer’s
drop icon (©).

e Connect a tool that supplies objects with traits to the Object
Viewer by dragging or clicking the viewer’s connect icon (s¥).

When you add an object to the Object Viewer, the tool creates a
sub-tab containing the default Traits UI view for the object. You can
remove any sub-tab by clicking its close icon ().

By default, the Object Viewer tool displays up to 50 tabs before it
begins to automatically close the oldest tabs. To change this
number, click the Object Viewer’s option icon (&), which displays
the following dialog box:

E Object Viewer Options g|

. S i |
Maximum number of open viewers: Eo =i

QK | Cancel |

Change Maximum number of open viewers to the new value and
click OK. If the new value is less than the current number of tabs,
the tool closes the appropriate number of the oldest tabs
automatically.

30 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

2.13 Profiler

The Profiler tool allows you to profile (gather execution time
statistics) for one or more classes or methods in an Envisage
application using the standard Python HotShot profiler. Here is a
screen shot of the Profiler tool waiting to begin profiling:

0 [‘P Profiler

imn|
&0 Hwl

Package Module Class Method

lenthought developer |numbers Converthumber number changed
enthought developer numbers ConvertMumber handler
enthought developer numbers ConvertMumber | convert

The Profiler contains a table of all methods that are currently set to
be profiled.

Each row represents a single method and consists of the following
columns:

Package: The name of the package that contains the method.
Module: The name of the module that contains the method.
Class: The name of the class that contains the method.
Method: The name of the method to profile.

To add methods to the Profiler do one of the following;:

e Drag a selection from a tool that supplies methods (or classes),
such as the Class Browser or Object Source tool, and drop it on
the Profiler’s drag and drop icon (@).

e Connect the Profiler to a source of methods (or classes) by
dragging or clicking the Profiler tool’s connect icon («¥).

You can add classes as well as methods to the Profiler. Adding a
class is the same as adding every method defined in the class,
excluding any methods that the class inherits from its base classes.

Once one or more methods have been added to the Profiler, the
start profiling icon () appears on the Profiler’s tab to indicate that
it is ready to start profiling. Click the icon whenever you are ready

22-Dec-06 31

The Enthought Developer Tool Suite G ENTHOUGHT

profile your code. After clicking the icon, profiling begins and the
icon changes to the stop profiling icon (). Click this icon to stop
profiling and analyze the results. After you click the stop profiling
icon, the icon reverts to the start profiling icon to indicate that the
Profiler is ready to start profiling again.

Each time the Profiler gathers profiling statistics, it writes the data
to a file with a name of the form: profiler_nnn.prof, where nnn
is an integer that is one larger than the last Profiler file created.

By default, the Profiler creates these files in the current directory,
but you can specify a different path by clicking the Profiler’s
options icon ([#)), which displays the following dialog box:

E Profiler Options

Profiler Data Files Path: || Browse...

| Expand dasses to show methods

K | Cancel |

Type the name of the new path in Path for Profiler data files, or
click Browse and use the system file dialog box to select the path.
The Expand classes to show methods option is not currently
implemented, so changing its value has no effect.

The Profiler does not display the analysis of the execution statistics
it gathers. It simply saves the results to a file. You can make the
name of the file available to other tools by doing one of the
following;:

e Drag the Profiler’s drag and drop icon (@) to another tool that
accepts file names, such as the Profile Viewer tool.

e Connect the Profiler to another tool that accepts file names, such
as the Profile Viewer, by dragging or clicking the Profiler’s
connect icon (s¥).

A typical usage scenario obviously is to drag or connect the output
of the Profiler tool to the Profile Viewer tool, which is explicitly
designed to analyze and display the contents of HotShot profile
tiles. However, you can use whatever tool you prefer to process the
Profiler results.

32 22-Dec-06

G ENTHOUGHT

The Developer Tool Suite Plug-ins

2.14

Profile Viewer

The Profile Viewer tool analyzes and displays the results of a
Python Hotshot profiling session, such as those produced using the
Profiler tool. Here is a screen shot of the Profile Viewer in use:

@ 2 Profile Viewer

profiler_1.prof £

Profile | Profile For Current Selection

Selection History

View: |No filter | | Results: All 113 items ® [id
Function Line |C. Calls|# Calls| T. Time |~ Time/Ca| C. Time |C. Time/Call|
|dr|:+p 124 1 1 0.00010 0.00010 0.01820 0.01820
make_connection | 411 1 1 0.00017 0.00017 | 0.01707 | 0.01707
add_permanent_ci 632 1 1 0.00014 0.00014 | 0.00977 @ 0.00977
set_pickle 58 1 1 0.00008 0.00008 0.00908 @ 0.00908
close 139 2 2 0.00019 0.00010 0.00670 | 0.00335
connect 704 1 1 0.00013 0.00013 | 0.00641 0.00641
connect_to 752 1 1 000012 0.00012 0.00622 @ 0.00622
dispatch 453 3 5 0.00014 0.00003 | 0.00541 0.00180
call 2 323 1 1 0.00003 0.00003 0.00523 @ 0.00523
_file_position_chal 111 1 1 0.00020 0.00020 @ 0.00520 = 0.00520
call_1 37 3 3 000009 0.00003 0.00395 000132 o

The Profile Viewer is organized as a series of notebook tabs, with
one tab for each profiling session file being displayed. Each tab in
turn contains three notebook sub-tabs:

e Profile: Displays all profiling statistics.
e Profile for Current Selection: Displays the profiling statistics
only for those methods and functions called from the selected
item in the Profile tab.
¢ Selection History: Displays all previously selected Profile tab

items.

22-Dec-06

33

The Enthought Developer Tool Suite G ENTHOUGHT

Each of these tabs contains a table showing methods and functions
called during the profiling session. Each row represents a single
method or function and contains the following columns:

e File Name: The fully qualified file name of the module
containing the profiled function.

e Path: The full path name of the module containing the profiled
function.

e Module: The name of the module containing the profiled
function.

e Function: The name of the profiled function.

e Line: The number of the line within the module where the
definition of the profiled function begins.

e C. Calls: Cumulative number of calls to the profiled function,
including recursive calls.

e # Calls: Number of calls made to the profiled function.

e T. Time: Total time spent in the profiled function, excluding
time spent calling out to other functions.

e T. Time/Call: Average total time spent in the profiled function.

e C. Time: Cumulative time spent in the profiled function,
including time spent calling out to other functions.

e C.Time/Call: Average cumulative time spent in the profiled
function.

To re-organize, add and delete columns by clicking the user
preference icon ('¥) in the table toolbar.

You can also sort the contents of the table by clicking a column
header. Reverse the sort order by clicking the same column header
again. You can restore the original table order by clicking the
unsort icon (&) in the table toolbar.

You can filter the contents of the table in any number of ways by
selecting a filter in the View list. You can also create new filters by
selecting Customize in the View list. Any filters you create are
automatically persisted until you explicitly delete them.

In a similar fashion, you can search the table for particular entries
by clicking the search icon (%) in the table toolbar and entering an
expression which evaluates to True when an item satisfies your
search criteria. Using the buttons in the search dialog box, you can
move forward and backward from one matching entry to the next
or select all matching entries at once.

34 22-Dec-06

G ENTHOUGHT

The Developer Tool Suite Plug-ins

When entering a Python search expression, you must specify the

correct attribute name for each column.

Table 2 Profile Viewer column attributes
Column Attribute

File Name file_ name
Path path_name
Module module_name
Function function
Line line
C. Calls cumulative_calls
Calls n_calls
T. Time total_time
T. Time/Call total_time_per_call
C. Time cumulative_time
C. Time/Call | cumulative_time_per_call

For example, the expression n_calls >= 1000 matches all
functions called at least 1000 times.

Each time you select a function in the Profile tab, the Profile For
Current Selection tab is updated to show only functions called
from the selected function, including itself. This behavior can be
useful when you are trying to “drill down” into a particular section
of the overall profile data.

Similarly, the first time you select an entry in the Profile tab, the
entry is also added to the bottom of the Selection History table,
creating a list of entries you selected. Selecting any entry in the
Selection History tab causes the corresponding entry in the Profile
tab to be reselected as well, which in turns causes the Profile For
Current Selection tab to be updated. This behavior can be useful
when you are analyzing different parts of the data and need to
switch back and forth between the same subsets of the data.

By default, the Profile Viewer tool displays up to 50 different
profiling session results, with up to 1000 entries per table. You can

22-Dec-06 35

The Enthought Developer Tool Suite G ENTHOUGHT

change either of these limits by clicking the tool’s options icon (i),
which displays the following dialog box:

B profile Viewer Options)
Maximum number of open profiler stats: Eo :ll

Maximum number of table rows displayed: | 1000 :II

Ok | Cancel |

Change either of the options to their new values and then click OK.
Allowing a very large number of table rows can negatively affect
the speed at which the display refreshes.

You can also delete the view of any profiling session by clicking the
session tab’s close icon ().

You can supply input to the Profile Viewer tool by doing one of the
following:

e Drag a file containing HotShot profiling data and drop it on the
Profile Viewer’s drop icon (@).

e Connect the Profile Viewer to a source of HotShot profile data,
such as the Profile tool, by dragging or clicking the Profile
Viewer’s connect icon («¥).

215 Syntax Checker

The Syntax Checker tool allows you to check Python source files for
syntax errors. Here is a screen shot that shows the Syntax Checker
in use:

36 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

it 0 [¥] Syntax Checker

| C:\svnnew\enthoughtisrc\iblenthoughtideveloperinumbers. py

18
ig9
20
21
22
23
24
25
26
27
28
23
30
31

£

numbrer = Int{ connect = 'to:the i1nteger valus') s
text = 5tr
Define the application object view:
traits_view = View(Item("text', style = 'readonly'))
Handle the 'number' trait being changed:
def number changed (self, number)
self.text = self. convert(number }
Convert an integer to its text representation:
def convert (self, n }):
if n = 0:
retorn "zero! v
>

| invalid syntax on line 25, column 42

GoTo

The message bar at the bottom of the view shows where first syntax
error in the module, if any, was found. To position the cursor to the
point of error, clicking Go To. You can then type changes to correct
the error. The Syntax Checker automatically re-parses the program
and reports the next error it finds, if any. After you have corrected
all syntax errors, the message bar displays “Syntactically correct”:

Syntactically correct

If you have changed the source file, the save icon (&) appears on
the Syntax Checker tool’s tab. Click the icon to save the changes to
the source file; when the file is saved, the icon disappears.

By default, the Syntax Checker does not automatically move the
cursor to the current syntax error. Instead, it waits for you to click
Go To. However, you can change this behavior by clicking the
options icon () and selecting Automatically move cursor to
syntax error in the options dialog box that is displayed:

22-Dec-06 37

The Enthought Developer Tool Suite G ENTHOUGHT

B3 Syntax Checker Options E|

[Automatically move cursor to syntax error

K | Cancel |

The Syntax Checker also defaults to automatically reloading the
current source file if it is changed externally to the tool. If you do
not want this behavior, clear Automatically reload externally
changed files in the options dialog box.

To select the Python source file to check, do one of the following:

e Drag a file from any tool or program that supplies file names
and drop it on the drop file icon (:#). Examples of such file name
sources are the Windows Explorer program and the File
Browser tool.

e Connect another tool that supplies file names, such as the File
Browser, to the Syntax Checker by dragging or clicking the
connect icon (s%).

You can also drag the current source file being checked to another
tool by dragging the drop file icon.

2.16 Traceback Viewer

The Traceback Viewer tool displays Python exception tracebacks in
a formatted table. Here is a screen shot that shows the Traceback
Viewer in use:

38 22-Dec-06

G ENTHOUGHT

The Developer Tool Suite Plug-ins

® x [0 Traceback viewer

| TypeError: dict objects are unhashable

mH

Base MName Line Caller Source
trait notifiers. py | 443 rebind call 4 object, trait name, old, new)
trait notifiers_py 455 | dispatch handler{ *args)

editor_py 261
instance editor.py 374
instance editorpy 424

update editor
update editor
resynch editor

VIEW. DY 385 |ui

ui.py 211 ui
toolkit.py 1068 ui subpanel
Ui panel py 99 |ui subpanel
Ui panel py 112 ui panel for
Ui panel py 196 init

ui panel py 7 panel

ui panel py 465

ui panel.py 581 init

ui panel.py 869 |add items
editor_py 125 prepare
text editor_py 212 update editor

text editor_py 227 get user value

self update editor()

self resynch editor()

id = gelf factony.id)

ui.uif parent, kind)

self rebuild(self, parent)

ui panel.ui subpanel ui, parent)

ui panel for(ui, parent, False)

ui.control = control = Panel(ui, parent, buttor
sw = panel(ui, cpanel)

content[0], ui)

fill panel for group fp = FillPanel{ panel, group, ui, suppress lak

self. add items(content, panel, self.sizer)
editor.prepare(panel)

self update editor()

if self. get user value() I= selfvalue:

return self factory_mapping.get(value, value)

The message bar at the top of the view displays the exception that
occurred, and the table below it shows the traceback entries for the
exception, with one row for each stack frame, with the most
recently executed stack frame at the bottom of the table.

The table contains the following columns:

e File Name: Full path and file name of the module the stack

frame was executing.

e Path Name: Full path name of the module the stack frame was

executing.

e Base Name: Base name of the module the stack frame was

executing.

e Line: Line number within the module the stack frame was

executing.

e Caller: Method or function name the stack frame was executing.
e Source: Source code of the line the stack frame was executing.

22-Dec-06

39

The Enthought Developer Tool Suite G ENTHOUGHT

By default, only the Base Name, Line, Caller and Source columns
are displayed. To reor_ganize, add, and remove columns, click the
user preference icon (I#) located to the top-right of the table.

To provide input (i.e., an exception traceback) to the Traceback
Viewer, do one of the following;:

e Drag and drop a traceback on the tool’s drop icon (®).

e Connect a tool which supplies traceback information, such as
the Logger tool, to the viewer’s connect icon ().

e Copy a sequence of text lines containing traceback information
and paste it into the viewer by clicking its paste icon ().

When you select a row in the viewer table, the tool also selects a
FilePosition object that describes the source file location
corresponding to the selected stack frame. The selected
FilePosition object can be connected to any other tool that accepts
FilePosition information, such as the FBI Viewer, by dragging or
clicking the viewer’s connect icon («).

By itself, the ability to view a traceback in a tabular format is
pleasant, but not compelling. The real usefulness of the Traceback
Viewer becomes apparent when you combine it with other tools.

For example, a user sends you an e-mail message reporting a
problem and includes the traceback they encountered. You copy
the traceback text from the e-mail and click on the Traceback
Viewer’s paste icon to display the traceback. Next you drag the
tool’s connect icon and drop it on the FBI Viewer’s connect icon to
connect them together. Now you can select stack frames in the
Traceback Viewer and view the corresponding source code in the
FBI Viewer. You might even decide to try to reproduce the
problem, and begin to set some breakpoints using the FBI Viewer.

Or maybe you are trying to track down problems in a plug-in you
are developing, and you have configured the Logger tool to show
logged exceptions. You connect the Logger tool to the Traceback
Viewer so that you can select an exception in the Logger and view
the corresponding traceback in the Traceback Viewer. Then, as in
the previous scenario, you connect the Traceback Viewer to the FBI
Viewer so that you can view the source code and set appropriate
breakpoints.

40 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

2.17 Traits UI DB

The Traits UI DB tool allows you to browse, inspect, and delete
items in the Traits UI data base. The Traits UI database contains
persistent information, usually user preference data, about
application views and windows created using the Traits UI APL
Being able to browse, inspect, and sometimes delete this
information can be very useful when you are trying to debug
Traits-based user interface problems. Here is a screen shot of the
Traits UI DB tool in use:

@ Y Traits UI DB

Id -

dmorrill features. ConnectFeature_permanent_connections

dmorrill_helper.fbi

dmoaorrill_helper fbi_break_points

dmorrill.helper.foi.break_points. state
drmorrill_helper fbi_break _points:internal

dmoaorrill_helper fbi_stack_frame
dmaorrill_plugins.app_monitor. AppMonitor.options
dmorrill.plugins.app_monitor. AppMonitor.state
drorrill_plugins_app_monitor.options
dmorrill_plugins.class_browser.ClassBrowserSourceView

dmoaorrill_plugins.debug_inspector. Objectinspector =z

The tool lists the IDs of all current Traits UI database entries in
alphabetical order. To delete an ID and its associated data from the
database, select the ID and clicking the delete icon (&f) that appears
on the top-right hand side of the list.

To inspect the data associated with a particular ID, first select the
ID, and then do one of the following;:

e Drag the drag icon (®) and drop it on another tool that can
display Python objects, such as the Universal Inspector.

22-Dec-06 41

The Enthought Developer Tool Suite G ENTHOUGHT

e Connect the Traits UI DB tool to another tool that can display
Python objects by dragging or clicking the connect icon ().
This action creates a permanent connection that allows you to
select any database ID and immediately see its corresponding
value in the other tool’s view.

218 Ul Debugger

The UI Debugger tool displays a tree view of a section of the
application’s wxPython window hierarchy starting at a specified
top-most, parent window. It also allows you to display information
about, query, or modify the contents of any window in the
hierarchy.

Here is screen shot of the UI Debugger in use:

© & UIDebugger

=
i Panel (panel)
-] Panel (panel) Fosition: (7, 29)
-] Panel (panel) Size: (573, 830)
=12 Panel (panel) Sizer: BoxSizer(116, 96)
=] E”E' ['35:“(‘;'3') Min size: (116, 96)
- Panel (pane .
Best » (116, 96
- Window (panel) est size: ()
-] Panel (panel)
+-[] Panel {pa - . _
-] Panel (panel) Kind | Calc min | Propertion | Border| Flags
+-[] Panel {pa Panel EXPAND
-] Panel (panel)
+-[] Panel {pa
Evaluate: |_.GEtEhE|EkQFDUI‘|dCD|DLIF|:I
1 ({236, 233, 21l&)
Result:
Fy » L4 *

To specity the top-most parent window to display, do the
following;:

42 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

1. If the Debug feature is not already active, right click any
notebook tab and click the Debug option of the Features sub-

menu:
Maximize ‘
Features g
Hide all
Hide
Showe v Connect

p—
) v Drag and Drop

Sl v Drag and Drop Files

v Options

Restore Layout * w Popup Menu

Delete Layout ¥

Edit Properties. ..

This action adds a Debug icon to each notebook tab that has an
associated application object:

| ..{E'@.ﬁ.pplicaﬁnn Manitor |

By default, the Debug icon represents the application object
associated with the tab. But you can modify it to represent the
wxPython window associated with the tab.

2. Right-click the Debug icon and click Window on the shortcut
menu:

v Object
DockControl

Traits LI
This modifies the Debug icon as shown below:

| ..{:\@.ﬁ.pplicaﬁnn Manitor |

3. Drag a Debug window icon and drop it on the UI Debugger’s
drop icon (©), icon to set the window hierarchy root.

22-Dec-06 43

The Enthought Developer Tool Suite G ENTHOUGHT

After you have set the root window of the UI Debugger, the tool
displays a tree view of all the children of the root window, as well
as their children, and so on. If you select an item in the tree view,
the tool updates the other three views with information about the
selected window. For example, one view shows information about
the position and size of the selected window:

Position: (7, 29)

Size: (573, 830)

Sizer: BoxSizer(116, 96)
Min size: (116, 96)
Best size: (116, 968)

Another view shows wx.Sizer information about the children of the
selected window:

Kind | Calc min | Proportion | Border | Flags

Panel |(116, 96) |1

The remaining view allows you to interactively query and modify
the selected window by entering Python code in the Evaluate field.

Evaluate: |_.GEtBadi§erLll'ldCD|DLer

W(236, 233, 216)
Result:

< >

4

The variable “_" is defined to be the selected window, while “___
is the wx.Sizer associated with the selected window. The results of
any Python expression entered are shown below in the Results
tield. The expression is evaluated each time you type a character, so
there is no need to press the Enter or Return key.

All of the sub-views are DockWindow components, and can be
reorganized and resized as desired. Any new layout is
automatically persisted for future uses of the tool.

44 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

219 Universal Inspector

The Universal Inspector tool displays a variety of data types,
including:

Python objects

Python objects stored in pickle files
Text files

Binary files

Here is a screen shot that shows the Universal Inspector displaying
the contents of an application, a Python source file, and the
compiled form of the same Python source file.

22-Dec-06 45

The Enthought Developer Tool Suite G ENTHOUGHT

| O nﬁ Universal Inspector |

| @ TraitsUIDB (3 |

| TraitsUIDE

= [TraitsUIDB(0x02CA53C0)
+ [.al_items: List(35)
[d .initialized: True
- |f'§ selected: TUIDBRecord(0x02E5D570)
O .id: 'dmorrill.helper. foi' [19]
- |f'§ ~wvalue: HasPayload(0x02E33020)
O . pavload full name: 'dmaorril.helper. fbi' [19]

| @ app_monitor.py L

| c:Ysvnnew\enthoughtisrclib\enthoughtideveloper \tools\app_monitor . py

70 traits view = View|(
71 Item{ 'view objectf’,
T2 show_label = False,
T3 resizable = True
74)
< »

| @ app_monitor.pyc L

| c:Ysvnnew\enthoughtisrclib\enthoughtideveloper tools\app_maonitor. pyc

1 #00000000 &DFZ0D0OA 00547845 63000000 00000000 m....TxEc |*
00030000 0073E600 00006400 SREPSRSg [P
00680000 0100&8C02 005SA0200 E..1l..2.
eCO030054 03006C04 O05A0400 eCOS005A 1..2..1..
05006C06 005A0600 &COTOO05A OT006CO8 L1020
00540800 6COS0054 O05006C0R QO05L0R00 BFAD Hd B
CO0B005a 0B000164 01006BOC Q0&CODOO 1..2...d.
£ »

Each new item added to the Universal Inspector appears in a
separate notebook tab. Like other DockWindow components, the
tabs can be moved around and reorganized as desired, as the
previous screen shot illustrates. Existing items can be deleted by
clicking the item’s delete icon ().

46 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

By default, the tool display up to 50 items before starting to delete
the oldest items. However, you can change this value by clicking
the tool’s option icon (), which displays the following dialog box:

B Universal Inspector Options E|
Maximum number of open inspectors: k0 j

0K | Cancel |

Change Maximum number of open inspectors to the value you
want, and then click OK. If the new value is smaller than the
current number of open inspectors, the oldest items in excess of the
new maximum are deleted.

To add items to the Universal Inspector, do one of the following:

e Drag an item from another tool, such as the Traits UI DB tool, or
another program, such as Windows Explorer, and drop it on the
drop icon (©).

e Connect the Universal Inspector to a tool that supplies items,
such as the File Browser tool, by dragging or clicking the
connect icon (s¥).

Each item displayed in the Universal Inspector can also be dragged
and dropped on other tools by dragging the item’s drag icon (®).

2.20 View Tester

The View Tester tool allows you to quickly iterate on the design of
a Traits Ul-based Envisage view. Here is a screen shot of the View
Tester being used to test the Syntax Checker too:

22-Dec-06 47

The Enthought Developer Tool Suite G ENTHOUGHT

O [Z| view Tester

2 ol [¥] Syntaxchedker O

I

To use the View Tester tool, drag a Python source file and drop it
on the tester’s drop icon (©). The only requirement on the source
tile is that it must contain a module-level object derived from
HasTraits called either view or demo. The View Tester tool loads
the file, locates the object named view or demo, and then opens
and displays the object’s default trait view as a notebook tab within
the tool.

The View Tester also monitors the dropped source file for changes,
and when a change occurs, it automatically closes the previous
view’s tab, reloads the source file, and creates a new tab containing
the view for the changed file. This behavior facilitates rapidly
iterating on user interface and logic changes. You can makes
changes in your text editor, and then immediately see the effect of
the changes when you save the file.

If you do not want the previous version of a view to be closed
automatically after the source file changes, or you do not want the
changed code to be automatically loaded by the View Tester, click
the tester’s option icon (), which displays the following dialog
box:

48 22-Dec-06

G ENTHOUGHT The Developer Tool Suite Plug-ins

B View Tester Options g|

v Automatically run a changed file
I+ Automatically dose old views

QK. | Cancel |

Change the appropriate option, and then click OK. For example,
you might want to clear Automatically close old views if you want
to compare the before and after effects of a source file change. With
the option cleared, you can see several versions of the view
simultaneously. Of course, you can remove a view from the tool at
any time by clicking the delete icon (J) on its tab.

If you clear Automatically run a changed file, changes to the
source file do not automatically cause a new view to be created.
Instead, the load icon (*¥) appears on the View Tester’s tab:

O %] ¥ view Tester

Click the load icon when you are ready to test the latest version of
the source code. When you click the icon, the tool creates a new
view tab based on the current source file, and also removes the icon
from the tab until the source file is changed again. Working in this
mode is useful when you make lots of source file changes and save
the file frequently.

221 Wiretap

The Wiretap tool allows you to set and remove breakpoints based
on the value of a trait being changed. Here is a screen shot of the
Wiretap tool in use:

O = Wiretap

—

&l

Entire ohject Object Mame | Condition
False <enthought developer tools traits ui db.1selected | |

False <enthought. developer tools file browser f directory

22-Dec-06 49

The Enthought Developer Tool Suite G ENTHOUGHT

To create a wiretap breakpoint, drag a trait value from a tool such
as the Universal Inspector and drop it on the Wiretap tool’s drop
icon (©). Each time the specified trait changes value, the FBI
debugger opens, displaying the source code line that changed the
trait value.

The Wiretap tool displays a table containing an entry for each
currently defined wiretap breakpoint. The table has the following
columns:

e Entire Object: If set to True, a wiretap breakpoint is triggered
each time that any trait of the specified object changes value.
Otherwise the breakpoint is triggered only when the specified
trait changes value.

e Object: Contains a description of the object the wiretap
breakpoint is set on.

e Name: The name of the object trait the wiretap breakpoint is set
on.

e Condition: An optional Python expression that is evaluated
each time the specified trait changes value. If the expression
evaluates to True, the wiretap breakpoint is triggered;
otherwise execution continues. If no expression is specified, the
breakpoint is triggered every time the trait changes value.

To modify the Entire Object and Condition fields, select the field
in the table and enter the new value.

To delete a wiretap breakpoint, select the breakpoint in the table
and click the delete icon (&5) in the table toolbar.

To sort the items in the table, click any column header. Reverse the
sort order of the data by clicking the same column header again. To
un-sort the data, click the unsort icon (&) in the table toolbar.

Unlike the breakpoints set by the Break Points tool, a wiretap
breakpoint is not persisted across sessions because it depends upon
monitoring an object which either will not exist or will have a
different identity the next time the application is run.

50 22-Dec-06

	The Enthought Developer Tool Suite
	1 Introduction
	1.1 Adding the Tool Suite to an Envisage Application
	1.2 Using the Plug-ins

	2 The Developer Tool Suite Plug-ins
	2.1 Application Monitor
	2.2 Break Points
	2.3 Class Browser
	2.4 Envisage Browser
	2.5 Favorites Browser
	2.6 FBI Viewer
	2.7 File Browser
	2.8 File Space
	2.9 Listener
	2.10 Logger
	2.11 Object Source
	2.12 Object Viewer
	2.13 Profiler
	2.14 Profile Viewer
	2.15 Syntax Checker
	2.16 Traceback Viewer
	2.17 Traits UI DB
	2.18 UI Debugger
	2.19 Universal Inspector
	2.20 View Tester
	2.21 Wiretap

