
pyglet Programming Guide

pyglet Programming Guide

iv

Table of Contents
Welcome ... vii

Sections .. vii
Table of contents .. vii

Installation .. 1
Installing using setup.py .. 1
Installation from the runtime eggs ... 1

Writing a pyglet application ... 2
Hello, World ... 2
Image viewer ... 2
Handling mouse and keyboard events .. 3
Playing sounds and music .. 4
Where to next? .. 5

Creating an OpenGL context .. 6
Displays, screens, configs and contexts .. 6

Contexts and configs ... 6
Displays .. 7
Screens ... 7

OpenGL configuration options .. 8
The default configuration ... 10

Simple context configuration .. 10
Selecting the best configuration ... 11
Sharing objects between contexts ... 12

The OpenGL interface ... 14
Using OpenGL ... 14
Resizing the window ... 15
Error checking .. 15
Using extension functions .. 16
Using multiple windows .. 16
AGL, GLX and WGL ... 17

Graphics .. 18
Drawing primitives ... 18
Vertex attributes ... 19
Vertex lists .. 20

Updating vertex data ... 21
Data usage ... 22
Indexed vertex lists ... 22

Batched rendering ... 22
Setting the OpenGL state ... 23
Hierarchical state .. 24
Sorting vertex lists .. 25

Batches and groups in other modules ... 25
Windowing .. 26

Creating a window .. 26
Context configuration .. 26
Fullscreen windows ... 27

Size and position .. 27
Appearance .. 28

Window style ... 28
Caption ... 29
Icon .. 29

Visibility ... 30

pyglet Programming Guide

v

Subclassing Window ... 30
Windows and OpenGL contexts .. 31

Double-buffering .. 31
Vertical retrace synchronisation ... 31

The application event loop ... 32
Customising the event loop .. 32

Event loop events ... 32
Overriding the default idle policy .. 33

Dispatching events manually ... 33
The pyglet event framework ... 35

Setting event handlers .. 35
Stacking event handlers ... 36
Creating your own event dispatcher ... 37

Implementing the Observer pattern ... 38
Documenting events .. 39

Working with the keyboard .. 40
Keyboard events ... 40

Defined key symbols ... 40
Modifiers ... 41
User-defined key symbols .. 42
Remembering key state .. 42

Text and motion events .. 42
Motion events .. 43

Keyboard exclusivity ... 44
Working with the mouse .. 46

Mouse events ... 46
Changing the mouse cursor .. 48
Mouse exclusivity ... 49

Keeping track of time .. 50
Calling functions periodically .. 50
Animation techniques .. 51
The frame rate ... 51

Displaying the frame rate ... 51
User-defined clocks ... 52

Displaying text ... 53
Simple text rendering .. 53
Loading system fonts ... 53
Font sizes .. 54

Font resolution ... 54
Determining font size .. 54

Loading custom fonts .. 55
Supported font formats .. 55

OpenGL font considerations ... 56
Context affinity .. 56
Blend state .. 56

Images .. 57
Loading an image ... 57
Supported image formats .. 58
Working with images .. 59
The AbstractImage hierarchy .. 60
Accessing or providing pixel data .. 61

Performance concerns .. 61
Image sequences and atlases ... 62

Image grids .. 63

pyglet Programming Guide

vi

3D textures .. 64
Texture bins and atlases ... 65

Animations .. 65
Buffer images .. 66
Displaying images ... 67

Sprites .. 67
Simple image blitting .. 68

OpenGL imaging .. 69
Texture dimensions ... 69
Texture internal format .. 70

Saving an image ... 71
Sound and video ... 72

Audio drivers ... 72
DirectSound ... 72
OpenAL .. 73
ALSA ... 73
Linux Issues .. 73

Supported media types ... 73
Loading media ... 74
Simple audio playback ... 75
Controlling playback ... 75
Incorporating video ... 77
Positional audio .. 77

Application resources .. 79
Loading resources ... 79

Resource locations .. 80
Specifying the resource path ... 80
Multiple loaders .. 81
Saving user preferences ... 81

Debugging tools ... 83
Debugging OpenGL .. 83

Error checking .. 84
Tracing ... 84

Tracing execution ... 84
Platform-specific debugging .. 84

Linux .. 84
Windows ... 84

Appendix: Migrating to pyglet 1.1 ... 85
Compatibility and deprecation ... 85
Deprecated methods .. 85
New features replacing standard practice ... 85

Importing pyglet ... 85
Application event loop ... 86
Loading resources ... 87

New graphics features ... 87
New text features .. 88
Other new features .. 88

vii

Welcome
The pyglet Programming Guide provides in-depth documentation for writing applications that use pyglet.
Many topics described here reference the pyglet API reference, provided separately.

If this is your first time reading about pyglet, we suggest you start at Writing a pyglet application.

Sections
• Installation

• Writing a pyglet application

• Creating an OpenGL context

• The OpenGL interface

• Graphics

• Windowing

• The application event loop

• The pyglet event framework

• Working with the keyboard

• Working with the mouse

• Keeping track of time

• Displaying text

• Images

• Sound and video

• Application resources

• Debugging tools

• Appendix: Migrating to pyglet 1.1

Table of contents
• Installation

• Installing using setup.py

• Installation from the runtime eggs

• Writing a pyglet application

• Hello, World

Welcome

viii

• Image viewer

• Handling mouse and keyboard events

• Playing sounds and music

• Where to next?

• Creating an OpenGL context

• Displays, screens, configs and contexts

• Contexts and configs

• Displays

• Screens

• OpenGL configuration options

• The default configuration

• Simple context configuration

• Selecting the best configuration

• Sharing objects between contexts

• The OpenGL interface

• Using OpenGL

• Resizing the window

• Error checking

• Using extension functions

• Using multiple windows

• AGL, GLX and WGL

• Graphics

• Drawing primitives

• Vertex attributes

• Vertex lists

• Updating vertex data

• Data usage

• Indexed vertex lists

• Batched rendering

Welcome

ix

• Setting the OpenGL state

• Hierarchical state

• Sorting vertex lists

• Batches and groups in other modules

• Windowing

• Creating a window

• Context configuration

• Fullscreen windows

• Size and position

• Appearance

• Window style

• Caption

• Icon

• Visibility

• Subclassing Window

• Windows and OpenGL contexts

• Double-buffering

• Vertical retrace synchronisation

• The application event loop

• Customising the event loop

• Event loop events

• Overriding the default idle policy

• Dispatching events manually

• The pyglet event framework

• Setting event handlers

• Stacking event handlers

• Creating your own event dispatcher

• Implementing the Observer pattern

• Documenting events

Welcome

x

• Working with the keyboard

• Keyboard events

• Defined key symbols

• Modifiers

• User-defined key symbols

• Remembering key state

• Text and motion events

• Motion events

• Keyboard exclusivity

• Working with the mouse

• Mouse events

• Changing the mouse cursor

• Mouse exclusivity

• Keeping track of time

• Calling functions periodically

• Animation techniques

• The frame rate

• Displaying the frame rate

• User-defined clocks

• Displaying text

• Simple text rendering

• Loading system fonts

• Font sizes

• Font resolution

• Determining font size

• Loading custom fonts

• Supported font formats

• OpenGL font considerations

• Context affinity

• Blend state

Welcome

xi

• Images

• Loading an image

• Supported image formats

• Working with images

• The AbstractImage hierarchy

• Accessing or providing pixel data

• Performance concerns

• Image sequences and atlases

• Image grids

• 3D textures

• Texture bins and atlases

• Animations

• Buffer images

• Displaying images

• Sprites

• Simple image blitting

• OpenGL imaging

• Texture dimensions

• Texture internal format

• Saving an image

• Sound and video

• Audio drivers

• DirectSound

• OpenAL

• ALSA

• Linux Issues

• Supported media types

• Loading media

• Simple audio playback

• Controlling playback

Welcome

xii

• Incorporating video

• Positional audio

• Application resources

• Loading resources

• Resource locations

• Specifying the resource path

• Multiple loaders

• Saving user preferences

• Debugging tools

• Debugging OpenGL

• Error checking

• Tracing

• Tracing execution

• Platform-specific debugging

• Linux

• Windows

• Appendix: Migrating to pyglet 1.1

• Compatibility and deprecation

• Deprecated methods

• New features replacing standard practice

• Importing pyglet

• Application event loop

• Loading resources

• New graphics features

• New text features

• Other new features

1

Installation
pyglet does not need to be installed. Because it uses no external libraries or compiled binaries, you can
run it in-place. You can distribute the pyglet source code or runtime eggs alongside your application code
(see Distribution).

You might want to experiment with pyglet and run the example programs before you install it on
your development machine. To do this, add either the extracted pyglet source archive directory or the
compressed runtime egg to your PYTHONPATH.

On Windows you can specify this from a command line:

set PYTHONPATH c:\path\to\pyglet-1.1\;%PYTHONPATH%

On Mac OS X, Linux or on Windows under cygwin using bash:

set PYTHONPATH /path/to/pyglet-1.1/:$PYTHONPATH
export PYTHONPATH

or, using tcsh or a variant:

setenv PYTHONPATH /path/to/pyglet-1.1/:$PYTHONPATH

If you have downloaded a runtime egg instead of the source archive, you would specify the filename of
the egg in place of pyglet-1.1/.

Installing using setup.py
To make pyglet available to all users, or to avoid having to set the PYTHONPATH for each session, you
can install it into your Python's site-packages directory.

From a command prompt on Windows, change into the extracted pyglet source archive directory and type:

python setup.py install

On Mac OS X and Linux you will need to do the above as a priveleged user; for example using sudo:

sudo python setup.py install

Once installed you should be able to import pyglet from any terminal without setting the
PYTHONPATH.

Installation from the runtime eggs
If you have setuptools installed, you can install or upgrade to the latest version of pyglet using
easy_install:

easy_install -U pyglet

On Mac OS X and Linux you may need to run the above as a priveleged user; for example:

sudo easy_install -U pyglet

2

Writing a pyglet application
Getting started with a new library or framework can be daunting, especially when presented with a large
amount of reference material to read. This chapter gives a very quick introduction to pyglet without
covering any of the details.

Hello, World
We'll begin with the requisite "Hello, World" introduction. This program will open a window with some
text in it and wait to be closed. You can find the entire program in the examples/programming_guide/
hello_world.py file.

Begin by importing the pyglet package:

import pyglet

Create a Window by calling its default constructor. The window will be visible as soon as it's created, and
will have reasonable default values for all its parameters:

window = pyglet.window.Window()

To display the text, we'll create a Label. Keyword arguments are used to set the font, position and alignment
of the label:

label = pyglet.text.Label('Hello, world',
 font_name='Times New Roman',
 font_size=36,
 x=window.width//2, y=window.height//2,
 halign='center', valign='center')

An on_draw event is dispatched to the window to give it a chance to redraw its contents. pyglet provides
several ways to attach event handlers to objects; a simple way is to use a decorator:

@window.event
def on_draw():
 window.clear()
 label.draw()

Within the on_draw handler the window is cleared to the default background color (black), and the label
is drawn.

Finally, call:

pyglet.app.run()

To let pyglet respond to application events such as the mouse and keyboard. Your event handlers will now
be called as required, and the run method will return only when all application windows have been closed.

Note that earlier versions of pyglet required the application developer to write their own event-handling
runloop. This is still possible, but discouraged; see The application event loop for details.

Image viewer
Most games will need to load and display images on the screen. In this example we'll load an image from
the application's directory and display it within the window:

Writing a pyglet application

3

import pyglet

window = pyglet.window.Window()
image = pyglet.resource.image('kitten.jpg')

@window.event
def on_draw():
 window.clear()
 image.blit(0, 0)

pyglet.app.run()

We used the pyglet.resource.image function to load the image, which automatically locates the file relative
to the source file (rather than the working directory). To load an image not bundled with the application
(for example, specified on the command line, you would use pyglet.image.load).

The AbstractImage.blit method draws the image. The arguments (0, 0) tell pyglet to draw the image
at pixel coordinates 0, 0 in the window (the lower-left corner).

The complete code for this example is located in examples/programming_guide/image_viewer.py.

Handling mouse and keyboard events
So far the only event used is the on_draw event. To react to keyboard and mouse events, it's necessary to
write and attach event handlers for these events as well:

import pyglet

window = pyglet.window.Window()

@window.event
def on_key_press(symbol, modifiers):
 print 'A key was pressed'

@window.event
def on_draw():
 window.clear()

pyglet.app.run()

Keyboard events have two parameters: the virtual key symbol that was pressed, and a bitwise combination
of any modifiers that are present (for example, the CTRL and SHIFT keys).

The key symbols are defined in pyglet.window.key:

from pyglet.window import key

@window.event
def on_key_press(symbol, modifiers):
 if symbol == key.A:
 print 'The "A" key was pressed.'
 elif symbol == key.LEFT:
 print 'The left arrow key was pressed.'
 elif symbol == key.ENTER:

Writing a pyglet application

4

 print 'The enter key was pressed.'

See the pyglet.window.key documentation for a complete list of key symbols.

Mouse events are handled in a similar way:

from pyglet.window import mouse

@window.event
def on_mouse_press(x, y, button, modifiers):
 if button == mouse.LEFT:
 print 'The left mouse button was pressed.'

The x and y parameters give the position of the mouse when the button was pressed, relative to the lower-
left corner of the window.

There are more than 20 event types that you can handle on a window. The easiest way to find the event
name and parameters you need is to add the following line to your program:

window.push_handlers(pyglet.window.event.WindowEventLogger())

This will cause all events received on the window to be printed to the console.

An example program using keyboard and mouse events is in examples/programming_guide/events.py

Playing sounds and music
pyglet makes it easy to play and mix multiple sounds together in your game. The following example plays

an MP3 file 5:

import pyglet

music = pyglet.resource.media('music.mp3')
music.play()

pyglet.app.run()

As with the image loading example presented earlier, pyglet.resource.media locates the sound file in the
application's directory (not the working directory). If you know the actual filesystem path (either relative
or absolute), use pyglet.media.load.

Short sounds, such as a gunfire shot used in a game, should be decoded in memory before they
are used, so that they play more immediately and incur less of a CPU performance penalty. Specify
streaming=False in this case:

sound = pyglet.resource.media('shot.wav', streaming=False)
sound.play()

The examples/media_player.py example demonstrates playback of streaming audio and video using pyglet.
The examples/noisy/noisy.py example demonstrates playing many short audio samples simultaneously, as
in a game.

5MP3 and other compressed audio formats require AVbin to be installed (this is the default for the Windows and Mac OS X installers). Uncompressed
WAV files can be played without AVbin.

Writing a pyglet application

5

Where to next?
The examples presented in this chapter should have given you enough information to get started writing
simple arcade and point-and-click-based games.

The remainder of this programming guide goes into quite technical detail regarding some of pyglet's
features. While getting started, it's recommended that you skim the beginning of each chapter but not
attempt to read through the entire guide from start to finish.

To write 3D applications or achieve optimal performance in your 2D
applications you'll need to work with OpenGL directly. The canonical references
for OpenGL are The OpenGL Programming Guide [http://opengl.org/documentation/
books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version] and The
OpenGL Shading Language [http://opengl.org/documentation/books/
#the_opengl_shading_language_2nd_edition].

There are numerous examples of pyglet applications in the examples/ directory of the documentation
and source distributions. Keep checking http://www.pyglet.org/ for more examples and tutorials as they
are written.

http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://www.pyglet.org/

6

Creating an OpenGL context
This section describes how to configure an OpenGL context. For most applications the information
described here is far too low-level to be of any concern, however more advanced applications can take
advantage of the complete control pyglet provides.

Displays, screens, configs and contexts

Flow of construction, from the singleton Platform to a newly created Window with its
Context.

Contexts and configs
When you draw on a window in pyglet, you are drawing to an OpenGL context. Every window has its
own context, which is created when the window is created. You can access the window's context via its
context attribute.

The context is created from an OpenGL configuration (or "config"), which describes various properties of
the context such as what color format to use, how many buffers are available, and so on. You can access
the config that was used to create a context via the context's config attribute.

For example, here we create a window using the default config and examine some of its properties:

>>> import pyglet
>>> window = pyglet.window.Window()
>>> context = window.context
>>> config = context.config
>>> config.double_buffer
c_int(1)
>>> config.stereo
c_int(0)
>>> config.sample_buffers
c_int(0)

Note that the values of the config's attributes are all ctypes instances. This is because the config was not
specified by pyglet. Rather, it has been selected by pyglet from a list of configs supported by the system.
You can make no guarantee that a given config is valid on a system unless it was provided to you by
the system.

Creating an OpenGL context

7

pyglet simplifies the process of selecting one of the system's configs by allowing you to create a "template"
config which specifies only the values you are interested in. See Simple context configuration for details.

Displays

The system may actually support several different sets of configs, depending on which display device is
being used. For example, a computer with two video cards would have not support the same configs on
each card. Another example is using X11 remotely: the display device will support different configurations
than the local driver. Even a single video card on the local computer may support different configs for
the two monitors plugged in.

In pyglet, a "display" is a collection of "screens" attached to a single display device. On Linux, the display
device corresponds to the X11 display being used. On Windows and Mac OS X, there is only one display
(as these operating systems present multiple video cards as a single virtual device).

There is a singleton class Platform which provides access to the display(s); this represents the computer
on which your application is running. It is usually sufficient to use the default display:

>>> platform = pyglet.window.get_platform()
>>> display = platform.get_default_display()

On X11, you can specify the display string to use, for example to use a remotely connected display. The
display string is in the same format as used by the DISPLAY environment variable:

>>> display = platform.get_display('remote:1.0')

You use the same string to specify a separate X11 screen 6:

>>> display = platform.get_display(':0.1')

Screens

Once you have obtained a display, you can enumerate the screens that are connected. A screen is
the physical display medium connected to the display device; for example a computer monitor, TV
or projector. Most computers will have a single screen, however dual-head workstations and laptops
connected to a projector are common cases where more than one screen will be present.

In the following example the screens of a dual-head workstation are listed:

>>> for screen in display.get_screens():
... print screen
...
XlibScreen(screen=0, x=1280, y=0, width=1280, height=1024, xinerama=1)
XlibScreen(screen=0, x=0, y=0, width=1280, height=1024, xinerama=1)

Because this workstation is running Linux, the returned screens are XlibScreen, a subclass of Screen.
The screen and xinerama attributes are specific to Linux, but the x, y, width and height attributes
are present on all screens, and describe the screen's geometry, as shown below.

6Assuming Xinerama is not being used to combine the screens. If Xinerama is enabled, use screen 0 in the display string, and select a screen in
the same manner as for Windows and Mac OS X.

Creating an OpenGL context

8

Example arrangement of screens and their reported geometry. Note that the primary
display (marked "1") is positioned on the right, according to this particular user's
preference.

There is always a "default" screen, which is the first screen returned by get_screens. Depending on the
operating system, the default screen is usually the one that contains the taskbar (on Windows) or menu bar
(on OS X). You can access this screen directly using get_default_screen.

OpenGL configuration options
When configuring or selecting a Config, you do so based on the properties of that config. pyglet supports
a fixed subset of the options provided by AGL, GLX, WGL and their extensions. In particular, these
constraints are placed on all OpenGL configs:

• Buffers are always component (RGB or RGBA) color, never palette indexed.

• The "level" of a buffer is always 0 (this parameter is largely unsupported by modern OpenGL drivers
anyway).

• There is no way to set the transparent color of a buffer (again, this GLX-specific option is not well
supported).

• There is no support for pbuffers (equivalent functionality can be achieved much more simply and
efficiently using framebuffer objects).

The visible portion of the buffer, sometimes called the color buffer, is configured with the following
attributes:

buffer_size Number of bits per sample. Common values are
24 and 32, which each dedicate 8 bits per color
component. A buffer size of 16 is also possible,
which usually corresponds to 5, 6, and 5 bits of
red, green and blue, respectively.

Usually there is no need to set this property, as the
device driver will select a buffer size compatible
with the current display mode by default.

red_size, blue_size,
green_size, alpha_size

These each give the number of bits dedicated
to their respective color component. You should
avoid setting any of the red, green or blue sizes,
as these are determined by the driver based on the
buffer_size property.

Creating an OpenGL context

9

If you require an alpha channel in your color
buffer (for example, if you are compositing
in multiple passes) you should specify
alpha_size=8 to ensure that this channel is
created.

sample_buffers and
samples

Configures the buffer for multisampling, in
which more than one color sample is used to
determine the color of each pixel, leading to a
higher quality, antialiased image.

Enable multisampling by setting
sample_buffers=1, then give the number
of samples per pixel to use in samples.
For example, samples=2 is the fastest,
lowest-quality multisample configuration. A
higher-quality buffer (with a compromise in
performance) is possible with samples=4.

Not all video hardware supports multisampling;
you may need to make this a user-selectable
option, or be prepared to automatically
downgrade the configuration if the requested one
is not available.

stereo Creates separate left and right buffers, for use
with stereo hardware. Only specialised video
hardware such as stereoscopic glasses will
support this option. When used, you will need
to manually render to each buffer, for example
using glDrawBuffers.

double_buffer Create separate front and back buffers.
Without double-buffering, drawing commands
are immediately visible on the screen, and the
user will notice a visible flicker as the image is
redrawn in front of them.

It is recommended to set
double_buffer=True, which creates a
separate hidden buffer to which drawing is
performed. When the Window.flip is called, the
buffers are swapped, making the new drawing
visible virtually instantaneously.

In addition to the color buffer, several other buffers can optionally be created based on the values of these
properties:

depth_size A depth buffer is usually required for 3D
rendering. The typical depth size is 24 bits.
Specify 0 if you do not require a depth buffer.

stencil_size The stencil buffer is required for masking
the other buffers and implementing certain
volumetric shadowing algorithms. The typical

Creating an OpenGL context

10

stencil size is 8 bits; or specify 0 if you do not
require it.

accum_red_size,
accum_blue_size,
accum_green_size,
accum_alpha_size

The accumulation buffer can be used for simple
antialiasing, depth-of-field, motion blur and
other compositing operations. Its use nowadays
is being superceded by the use of floating-point
textures, however it is still a practical solution for
implementing these effects on older hardware.

If you require an accumulation buffer, specify 8
for each of these attributes (the alpha component
is optional, of course).

aux_buffers Each auxilliary buffer is configured the same as
the colour buffer. Up to four auxilliary buffers
can typically be created. Specify 0 if you do not
require any auxilliary buffers.

Like the accumulation buffer, auxilliary buffers
are used less often nowadays as more
efficient techniques such as render-to-texture are
available. They are almost universally available
on older hardware, though, where the newer
techniques are not possible.

The default configuration
If you create a Window without specifying the context or config, pyglet will use a template config with
the following properties:

Attribute Value

double_buffer True

depth_size 24

Simple context configuration
A context can only be created from a config that was provided by the system. Enumerating and comparing
the attributes of all the possible configs is a complicated process, so pyglet provides a simpler interface
based on "template" configs.

To get the config with the attributes you need, construct a Config and set only the attributes you are
interested in. You can then supply this config to the Window constructor to create the context.

For example, to create a window with an alpha channel:

config = pyglet.gl.Config(alpha_size=8)
window = pyglet.window.Window(config=config)

It is sometimes necessary to create the context yourself, rather than letting the Window constructor do this
for you. In this case use Screen.get_best_config to obtain a "complete" config, which you can then use
to create the context:

Creating an OpenGL context

11

platform = pyglet.window.get_platform()
display = platform.get_default_display()
screen = display.get_default_screen()

template = pyglet.gl.Config(alpha_size=8)
config = screen.get_best_config(template)
context = config.create_context(None)
window = pyglet.window.Window(context=context)

Note that you cannot create a context directly from a template (any Config you constructed yourself). The
Window constructor performs a similar process to the above to create the context if a template config is
given.

Not all configs will be possible on all machines. The call to get_best_config will raise
NoSuchConfigException if the hardware does not support the requested attributes. It will never return a
config that does not meet or exceed the attributes you specify in the template.

You can use this to support newer hardware features where available, but also accept a lesser config if
necessary. For example, the following code creates a window with multisampling if possible, otherwise
leaves multisampling off:

template = gl.Config(sample_buffers=1, samples=4)
try:
 config = screen.get_best_config(template)
except pyglet.window.NoSuchConfigException:
 template = gl.Config()
 config = screen.get_best_config(template)
window = pyglet.window.Window(config=config)

Selecting the best configuration
Allowing pyglet to select the best configuration based on a template is sufficient for most applications,
however some complex programs may want to specify their own algorithm for selecting a set of OpenGL
attributes.

You can enumerate a screen's configs using the get_matching_configs method. You must supply a template
as a minimum specification, but you can supply an "empty" template (one with no attributes set) to get a
list of all configurations supported by the screen.

In the following example, all configurations with either an auxilliary buffer or an accumulation buffer are
printed:

platform = pyglet.window.get_platform()
display = platform.get_default_display()
screen = display.get_default_screen()

for config in screen.get_matching_configs(gl.Config()):
 if config.aux_buffers or config.accum_red_size:
 print config

As well as supporting more complex configuration selection algorithms, enumeration allows you to
efficiently find the maximum value of an attribute (for example, the maximum samples per pixel), or
present a list of possible configurations to the user.

Creating an OpenGL context

12

Sharing objects between contexts
Every window in pyglet has its own OpenGL context. Each context has its own OpenGL state, including
the matrix stacks and current flags. However, contexts can optionally share their objects with one or more
other contexts. Shareable objects include:

• Textures

• Display lists

• Shader programs

• Vertex and pixel buffer objects

• Framebuffer objects

There are two reasons for sharing objects. The first is to allow objects to be stored on the video card only
once, even if used by more than one window. For example, you could have one window showing the
actual game, with other "debug" windows showing the various objects as they are manipulated. Or, a set
of widget textures required for a GUI could be shared between all the windows in an application.

The second reason is to avoid having to recreate the objects when a context needs to be recreated. For
example, if the user wishes to turn on multisampling, it is necessary to recreate the context. Rather than
destroy the old one and lose all the objects already created, you can

1. Create the new context, sharing object space with the old context, then

2. Destroy the old context. The new context retains all the old objects.

pyglet defines an ObjectSpace: a representation of a collection of objects used by one or more contexts.
Each context has a single object space, accessible via its object_space attribute.

By default, all contexts share the same object space as long as at least one context using it is "alive". If all
the contexts sharing an object space are lost or destroyed, the object space will be destroyed also. This is
why it is necessary to follow the steps outlined above for retaining objects when a context is recreated.

pyglet creates a hidden "shadow" context as soon as pyglet.gl is imported. By default, all windows will
share object space with this shadow context, so the above steps are generally not needed. The shadow
context also allows objects such as textures to be loaded before a window is created.

When you create a Context, you tell pyglet which other context it will obtain an object space from. By
default (when using the Window constructor to create the context) the most recently created context will be
used. You can specify another context, or specify no context (to create a new object space) in the Context
constructor.

It can be useful to keep track of which object space an object was created in. For example, when you load
a font, pyglet caches the textures used and reuses them; but only if the font is being loaded on the same
object space. The easiest way to do this is to set your own attributes on the ObjectSpace object.

In the following example, an attribute is set on the object space indicating that game objects have been
loaded. This way, if the context is recreated, you can check for this attribute to determine if you need to
load them again:

context = pyglet.gl.get_current_context()
object_space = context.object_space
object_space.my_game_objects_loaded = True

Creating an OpenGL context

13

Avoid using attribute names on ObjectSpace that begin with "pyglet", they may conflict with an internal
module.

14

The OpenGL interface
pyglet provides an interface to OpenGL and GLU. The interface is used by all of pyglet's higher-level
API's, so that all rendering is done efficiently by the graphics card, rather than the operating system. You
can access this interface directly; using it is much like using OpenGL from C.

The interface is a "thin-wrapper" around libGL.so on Linux, opengl32.dll on Windows and
OpenGL.framework on OS X. The pyglet maintainers regenerate the interface from the latest
specifications, so it is always up-to-date with the latest version and almost all extensions.

The interface is provided by the pyglet.gl package. To use it you will need a good knowledge of
OpenGL, C and ctypes. You may prefer to use OpenGL without using ctypes, in which case you should
investigate PyOpenGL [http://pyopengl.sourceforge.net/]. PyOpenGL [http://pyopengl.sourceforge.net/]
provides similar functionality with a more "Pythonic" interface, and will work with pyglet without any
modification.

Using OpenGL
Documentation of OpenGL and GLU are provided at the OpenGL website [http://www.opengl.org] and
(more comprehensively) in the OpenGL Programming Guide [http://opengl.org/documentation/red_book/
].

Importing the package gives access to OpenGL, GLU, and all OpenGL registered extensions. This is
sufficient for all but the most advanced uses of OpenGL:

from pyglet.gl import *

All function names and constants are identical to the C counterparts. For example, the following program
draws a triangle on the screen:

from pyglet.gl import *

Direct OpenGL commands to this window.
window = pyglet.window.Window()

@window.event
def on_draw():
 glClear(GL_COLOR_BUFFER_BIT)
 glLoadIdentity()
 glBegin(GL_TRIANGLES)
 glVertex2f(0, 0)
 glVertex2f(win.width, 0)
 glVertex2f(win.width, win.height)
 glEnd()

pyglet.app.run()

Some OpenGL functions require an array of data. These arrays must be constructed as ctypes arrays of
the correct type. The following example draw the same triangle as above, but uses a vertex array instead of
the immediate-mode functions. Note the construction of the vertex array using a one-dimensional ctypes
array of GLfloat:

from pyglet.gl import *

win = pyglet.window.Window()

http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://www.opengl.org
http://www.opengl.org
http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

The OpenGL interface

15

vertices = [
 0, 0,
 win.width, 0,
 win.width, win.height]
vertices_gl = (GLfloat * len(vertices))(*vertices)

glEnableClientState(GL_VERTEX_ARRAY)
glVertexPointer(2, GL_FLOAT, 0, vertices_gl)

@window.event
def on_draw():
 glClear(GL_COLOR_BUFFER_BIT)
 glLoadIdentity()
 glDrawArrays(GL_TRIANGLES, 0, len(vertices) // 2)

pyglet.app.run()

Similar array constructions can be used to create data for vertex buffer objects, texture data, polygon stipple
data and the map functions.

Resizing the window
pyglet sets up the viewport and an orthographic projection on each window automatically. It does this in
a default on_resize handler defined on Window:

@window.event
def on_resize(width, height):
 glViewport(0, 0, width, height)
 glMatrixMode(gl.GL_PROJECTION)
 glLoadIdentity()
 glOrtho(0, width, 0, height, -1, 1)
 glMatrixMode(gl.GL_MODELVIEW)

If you need to define your own projection (for example, to use a 3-dimensional perspective projection),
you should override this event with your own; for example:

@window.event
def on_resize(width, height):
 glViewport(0, 0, width, height)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()
 gluPerspective(65, width / float(height), .1, 1000)
 glMatrixMode(GL_MODELVIEW)
 return pyglet.event.EVENT_HANDLED

Note that the on_resize handler is called for a window the first time it is displayed, as well as any time
it is later resized.

Error checking
By default, pyglet calls glGetError after every GL function call (except where such a check would
be invalid). If an error is reported, pyglet raises GLException with the result of gluErrorString
as the message.

The OpenGL interface

16

This is very handy during development, as it catches common coding errors early on. However, it has a
significant impact on performance, and is disabled when python is run with the -O option.

You can also disable this error check by setting the following option before importing pyglet.gl or
pyglet.window:

Disable error checking for increased performance
pyglet.options['debug_gl'] = False

from pyglet.gl import *

Setting the option after importing pyglet.gl will have no effect. Once disabled, there is no error-
checking overhead in each GL call.

Using extension functions
Before using an extension function, you should check that the extension is implemented by the current
driver. Typically this is done using glGetString(GL_EXTENSIONS), but pyglet has a convenience
module, pyglet.gl.gl_info that does this for you:

if pyglet.gl.gl_info.have_extension('GL_ARB_shadow'):
 # ... do shadow-related code.
else:
 # ... raise an exception, or use a fallback method

You can also easily check the version of OpenGL:

if pyglet.gl.gl_info.have_version(1,5):
 # We can assume all OpenGL 1.5 functions are implemented.

Remember to only call the gl_info functions after creating a window.

There is a corresponding glu_info module for checking the version and extensions of GLU.

nVidia often release hardware with extensions before having them registered officially. When you
import * from pyglet.gl you import only the registered extensions. You can import the latest
nVidia extensions with:

from pyglet.gl.glext_nv import *

Using multiple windows
pyglet allows you to create and display any number of windows simultaneously. Each will be created with
its own OpenGL context, however all contexts will share the same texture objects, display lists, shader

programs, and so on, by default 7. Each context has its own state and framebuffers.

There is always an active context (unless there are no windows). When using pyglet.app.run for the
application event loop, pyglet ensures that the correct window is the active context before dispatching the
on_draw or on_resize events.

In other cases, you can explicitly set the active context with Window.switch_to.

7Sometimes objects and lists cannot be shared between contexts; for example, when the contexts are provided by different video devices. This will
usually only occur if you explicitly select different screens driven by different devices.

The OpenGL interface

17

AGL, GLX and WGL
The OpenGL context itself is managed by an operating-system specific library: AGL on OS X, GLX under
X11 and WGL on Windows. pyglet handles these details when a window is created, but you may need to
use the functions directly (for example, to use pbuffers) or an extension function.

The modules are named pyglet.gl.agl, pyglet.gl.glx and pyglet.gl.wgl. You must only
import the correct module for the running operating system:

if sys.platform == 'linux2':
 from pyglet.gl.glx import *
 glxCreatePbuffer(...)
elif sys.platform == 'darwin':
 from pyglet.gl.agl import *
 aglCreatePbuffer(...)

There are convenience modules for querying the version and extensions of WGL and GLX named
pyglet.gl.wgl_info and pyglet.gl.glx_info, respectively. AGL does not have such a
module, just query the version of OS X instead.

If using GLX extensions, you can import pyglet.gl.glxext_arb for the registered extensions or
pyglet.gl.glxext_nv for the latest nVidia extensions.

Similarly, if using WGL extensions, import pyglet.gl.wglext_arb or pyglet.gl.wglext_nv.

18

Graphics
At the lowest level, pyglet uses OpenGL to draw in windows. The OpenGL interface is exposed via the
pyglet.gl module (see The OpenGL interface).

However, using the OpenGL interface directly for drawing graphics is difficult and inefficient. The
pyglet.graphics module provides a simpler means for drawing graphics that uses vertex arrays and vertex
buffer objects internally to deliver better performance.

Drawing primitives
The pyglet.graphics module draws the OpenGL primitive objects by a mode denoted by the constants

• pyglet.gl.GL_POINTS

• pyglet.gl.GL_LINES

• pyglet.gl.GL_LINE_LOOP

• pyglet.gl.GL_LINE_STRIP

• pyglet.gl.GL_TRIANGLES

• pyglet.gl.GL_TRIANGLE_STRIP

• pyglet.gl.GL_TRIANGLE_FAN

• pyglet.gl.GL_QUADS

• pyglet.gl.GL_QUAD_STRIP

• pyglet.gl.GL_POLYGON

See the OpenGL Programming Guide [http://opengl.org/documentation/red_book/] for a description of
each of mode.

Each primitive is made up of one or more vertices. Each vertex is specified with either 2, 3 or 4 components
(for 2D, 3D, or non-homogeneous coordinates). The data type of each component can be either int or float.

Use pyglet.graphics.draw to draw a primitive. The following example draws two points at coordinates
(10, 15) and (30, 35):

pyglet.graphics.draw(2, pyglet.gl.GL_POINTS,
 ('v2i', (10, 15, 30, 35))
)

The first and second arguments to the function give the number of vertices to draw and the primitive mode,
respectively. The third argument is a "data item", and gives the actual vertex data.

Because vertex data can be supplied in several forms, a "format string" is required. In this case, the format
string is "v2i", meaning the vertex position data has two components (2D) and int type.

The following example has the same effect as the previous one, but uses floating point data and 3
components per vertex:

http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

Graphics

19

pyglet.graphics.draw(2, pyglet.gl.GL_POINTS,
 ('v3f', (10.0, 15.0, 0.0, 30.0, 35.0, 0.0))
)

Vertices can also be drawn out of order and more than once by using the pyglet.graphics.draw_indexed
function. This requires a list of integers giving the indices into the vertex data. The following example
draws the same two points as above, but indexes the vertices (sequentially):

pyglet.graphics.draw_indexed(2, pyglet.gl.GL_POINTS,
 [0, 1, 2, 3],
 ('v2i', (10, 15, 30, 35))
)

This second example is more typical; two adjacent triangles are drawn, and the shared vertices are reused
with indexing:

pyglet.graphics.draw_indexed(4, pyglet.gl.GL_TRIANGLES,
 [0, 1, 2, 0, 2, 3],
 ('v2i', (100, 100,
 150, 100,
 150, 150,
 100, 150))
)

Note that the first argument gives the number of vertices in the data, not the number of indices (which is
implicit on the length of the index list given in the third argument).

Vertex attributes
Besides the required vertex position, vertices can have several other numeric attributes. Each is specified
in the format string with a letter, the number of components and the data type.

Each of the attributes is described in the table below with the set of valid format strings written as a regular
expression (for example, "v[234][if]" means "v2f", "v3i", "v4f", etc. are all valid formats).

Some attributes have a "recommended" format string, which is the most efficient form for the video driver
as it requires less conversion.

Attribute Formats Recommended

Vertex position "v[234][sifd]" "v[234]f"

Color "c[34][bBsSiIfd]""c[34]B"

Edge flag "e1[bB]"

Fog coordinate "f[1234][bBsSiIfd]"

Normal "n3[bsifd]" "n3f"

Secondary color "s[34][bBsSiIfd]""s[34]B"

Texture coordinate "t[234][sifd]" "t[234]f"

Generic attribute "[0-
15]g(n)?[1234][bBsSiIfd]"

The possible data types that can be specified in the format string are described below.

Graphics

20

Format Type Python type

"b" Signed byte int

"B" Unsigned byte int

"s" Signed short int

"S" Unsigned short int

"i" Signed int int

"I" Unsigned int int

"f" Single precision
float

float

"d" Double precision
float

float

The following attributes are normalised to the range [0, 1]. The value is used as-is if the data type is
floating-point. If the data type is byte, short or int, the value is divided by the maximum value representable
by that type. For example, unsigned bytes are divided by 255 to get the normalised value.

• Color

• Secondary color

• Generic attributes with the "n" format given.

Up to 16 generic attributes can be specified per vertex, and can be used by shader programs for any purpose
(they are ignored in the fixed-function pipeline). For the other attributes, consult the OpenGL programming
guide for details on their effects.

When using the pyglet.graphics.draw and related functions, attribute data is specified alongside the vertex
position data. The following example reproduces the two points from the previous page, except that the
first point is blue and the second green:

pyglet.graphics.draw(2, pyglet.gl.GL_POINTS,
 ('v2i', (10, 15, 30, 35)),
 ('c3B', (0, 0, 255, 0, 255, 0))
)

It is an error to provide more than one set of data for any attribute, or to mismatch the size of the initial
data with the number of vertices specified in the first argument.

Vertex lists
There is a significant overhead in using pyglet.graphics.draw and pyglet.graphics.draw_indexed due to
pyglet interpreting and formatting the vertex data for the video device. Usually the data drawn in each
frame (of an animation) is identical or very similar to the previous frame, so this overhead is unnecessarily
repeated.

A VertexList is a list of vertices and their attributes, stored in an efficient manner that's suitable for direct
upload to the video card. On newer video cards (supporting OpenGL 1.5 or later) the data is actually stored
in video memory.

Create a VertexList for a set of attributes and initial data with pyglet.graphics.vertex_list. The following
example creates a vertex list with the two coloured points used in the previous page:

Graphics

21

vertex_list = pyglet.graphics.vertex_list(2,
 ('v2i', (10, 15, 30, 35)),
 ('c3B', (0, 0, 255, 0, 255, 0))
)

To draw the vertex list, call its VertexList.draw method:

vertex_list.draw(pyglet.gl.GL_POINTS)

Note that the primitive mode is given to the draw method, not the vertex list constructor. Otherwise the
vertex_list method takes the same arguments as pyglet.graphics.draw, including any number of vertex
attributes.

Because vertex lists can reside in video memory, it is necessary to call the delete method to release video
resources if the vertex list isn't going to be used any more (there's no need to do this if you're just exiting
the process).

Updating vertex data
The data in a vertex list can be modified. Each vertex attribute (including the vertex position) appears as
an attribute on the VertexList object. The attribute names are given in the following table.

Vertex attribute Object attribute

Vertex position vertices

Color colors

Edge flag edge_flags

Fog coordinate fog_coords

Normal normals

Secondary color secondary_colors

Texture coordinate tex_coords

Generic attribute Inaccessible

In the following example, the vertex positions of the vertex list are updated by replacing the vertices
attribute:

vertex_list.vertices = [20, 25, 40, 45]

The attributes can also be selectively updated in-place:

vertex_list.vertices[:2] = [30, 35]

Similarly, the color attribute of the vertex can be updated:

vertex_list.colors[:3] = [255, 0, 0]

For large vertex lists, updating only the modified vertices can have a perfomance benefit, especially on
newer graphics cards.

Attempting to set the attribute list to a different size will cause an error (not necessarily immediately,
either). To resize the vertex list, call VertexList.resize with the new vertex count. Be sure to fill in any
newly uninitialised data after resizing the vertex list.

Graphics

22

Since vertex lists are mutable, you may not necessarily want to initialise them with any particular data.
You can specify just the format string in place of the (format, data) tuple in the data arguments
vertex_list function. The following example creates a vertex list of 1024 vertices with positional, color,
texture coordinate and normal attributes:

vertex_list = pyglet.graphics.vertex_list(1024, 'v3f', 'c4B', 't2f', 'n3f')

Data usage
By default, pyglet assumes vertex data will be updated less often than it is drawn, but more often than just
during initialisation. You can override this assumption for each attribute by affixing a usage specification
onto the end of the format string, detailed in the following table:

Usage Description

"/static" Data is never or rarely
modified after initialisation

"/dynamic" Data is occasionally
modified (default)

"/stream" Data is updated every frame

In the following example a vertex list is created in which the positional data is expected to change every
frame, but the color data is expected to remain relatively constant:

vertex_list = pyglet.graphics.vertex_list(1024, 'v3f/stream', 'c4B/static')

The usage specification affects how pyglet lays out vertex data in memory, whether or not it's stored on
the video card, and is used as a hint to OpenGL. Specifying a usage does not affect what operations are
possible with a vertex list (a static attribute can still be modified), and may only have performance
benefits on some hardware.

Indexed vertex lists
IndexedVertexList performs the same role as VertexList, but for indexed vertices. Use
pyglet.graphics.indexed_vertex_list to construct an indexed vertex list, and update the
IndexedVertexList.indices sequence to change the indices.

Batched rendering
For optimal OpenGL performance, you should render as many vertex lists as possible in a single draw
call. Internally, pyglet uses VertexDomain and IndexedVertexDomain to keep vertex lists that share the
same attribute formats in adjacent areas of memory. The entire domain of vertex lists can then be drawn
at once, without calling VertexList.draw on each individual list.

It is quite difficult and tedious to write an application that manages vertex domains itself, though. In
addition to maintaining a vertex domain for each set of attribute formats, domains must also be separated
by primitive mode and required OpenGL state.

The Batch class implements this functionality, grouping related vertex lists together and sorting by
OpenGL state automatically. A batch is created with no arguments:

batch = pyglet.graphics.Batch()

Graphics

23

Vertex lists can now be created with the Batch.add and Batch.add_indexed methods instead
of pyglet.graphics.vertex_list and pyglet.graphics.indexed_vertex_list functions. Unlike the module
functions, these methods accept a mode parameter (the primitive mode) and a group parameter (described
below).

The two coloured points from previous pages can be added to a batch as a single vertex list with:

vertex_list = batch.add(2, pyglet.gl.GL_POINTS, None,
 ('v2i', (10, 15, 30, 35)),
 ('c3B', (0, 0, 255, 0, 255, 0))
)

The resulting vertex_list can be modified as described in the previous section. However, instead of calling
VertexList.draw to draw it, call Batch.draw to draw all vertex lists contained in the batch at once:

batch.draw()

For batches containing many vertex lists this gives a significant performance improvement over drawing
individual vertex lists.

To remove a vertex list from a batch, call VertexList.delete.

Setting the OpenGL state
In order to achieve many effects in OpenGL one or more global state parameters must be set. For example,
to enable and bind a texture requires:

from pyglet.gl import *
glEnable(texture.target)
glBindTexture(texture.target, texture.id)

before drawing vertex lists, and then

glDisable(texture.target)

afterwards to avoid interfering with later drawing commands.

With a Group these state changes can be encapsulated and associated with the vertex lists they affect.
Subclass Group and override the Group.set_state and Group.unset_state methods to perform the required
state changes:

class CustomGroup(pyglet.graphics.Group):
 def set_state(self):
 glEnable(texture.target)
 glBindTexture(texture.target, texture.id)

 def unset_state(self):
 glDisable(texture.target)

An instance of this group can now be attached to vertex lists in the batch:

custom_group = CustomGroup()
vertex_list = batch.add(2, pyglet.gl.GL_POINTS, custom_group,
 ('v2i', (10, 15, 30, 35)),
 ('c3B', (0, 0, 255, 0, 255, 0))
)

Graphics

24

The Batch ensures that the appropriate set_state and unset_state methods are called before and
after the vertex lists that use them.

Hierarchical state
Groups have a parent attribute that allows them to be implicitly organised in a tree structure. If groups
B and C have parent A, then the order of set_state and unset_state calls for vertex lists in a
batch will be:

A.set_state()
Draw A vertices
B.set_state()
Draw B vertices
B.unset_state()
C.set_state()
Draw C vertices
C.unset_state()
A.unset_state()

This is useful to group state changes into as few calls as possible. For example, if you have a number
of vertex lists that all need texturing enabled, but have different bound textures, you could enable and
disable texturing in the parent group and bind each texture in the child groups. The following example
demonstrates this:

class TextureEnableGroup(pyglet.graphics.Group):
 def set_state(self):
 glEnable(GL_TEXTURE_2D)

 def unset_state(self):
 glDisable(GL_TEXTURE_2D)

texture_enable_group = TextureEnableGroup()

class TextureBindGroup(pyglet.graphics.Group):
 def __init__(self, texture):
 super(TextureBindGroup, self).__init__(parent=texture_enable_group)
 assert texture.target = GL_TEXTURE_2D
 self.texture = texture

 def set_state(self):
 glBindTexture(GL_TEXTURE_2D, self.texture.id)

 # No unset_state method required.

 def __eq__(self, other):
 return (self.__class__ is other.__class__ and
 self.texture == other.__class__)

batch.add(4, GL_QUADS, TextureBindGroup(texture1), 'v2f', 't2f')
batch.add(4, GL_QUADS, TextureBindGroup(texture2), 'v2f', 't2f')
batch.add(4, GL_QUADS, TextureBindGroup(texture1), 'v2f', 't2f')

Note the use of an __eq__ method on the group to allow Batch to merge the two TextureBindGroup
identical instances.

Graphics

25

Sorting vertex lists
VertexDomain does not attempt to keep vertex lists in any particular order. So, any vertex lists sharing the
same primitive mode, attribute formats and group will be drawn in an arbitrary order. However, Batch will
sort Group objects sharing the same parent by their __cmp__ method. This allows groups to be ordered.

The OrderedGroup class is a convenience group that does not set any OpenGL state, but is parameterised
by an integer giving its draw order. In the following example a number of vertex lists are grouped into a
"background" group that is drawn before the vertex lists in the "foreground" group:

background = pyglet.graphics.OrderedGroup(0)
foreground = pyglet.graphics.OrderedGroup(1)

batch.add(4, GL_QUADS, foreground, 'v2f')
batch.add(4, GL_QUADS, background, 'v2f')
batch.add(4, GL_QUADS, foreground, 'v2f')
batch.add(4, GL_QUADS, background, 'v2f', 'c4B')

By combining hierarchical groups with ordered groups it is possible to describe an entire scene within a
single Batch, which then renders it as efficiently as possible.

Batches and groups in other modules
The Sprite, Label and TextLayout classes all accept batch and group parameters in their constructors.
This allows you to add any of these higher-level pyglet drawables into arbitrary places in your rendering
code.

For example, multiple sprites can be grouped into a single batch and then drawn at once, instead of calling
Sprite.draw on each one individually:

batch = pyglet.graphics.Batch()
sprites = [pyglet.sprite.Sprite(image, batch=batch) for i in range(100)]

batch.draw()

The group parameter can be used to set the drawing order (and hence which objects overlap others)
within a single batch, as described on the previous page.

In general you should batch all drawing objects into as few batches as possible, and use groups to manage
the draw order and other OpenGL state changes for optimal performance. If you are creating your own
drawable classes, consider adding batch and group parameters in a similar way.

26

Windowing
A Window in pyglet corresponds to a top-level window provided by the operating system. Windows can
be floating (overlapped with other application windows) or fullscreen.

Creating a window
If the Window constructor is called with no arguments, defaults will be assumed for all parameters:

window = pyglet.window.Window()

The default parameters used are:

• The window will have a size of 640x480, and not be resizable.

• A default context will be created using template config described in OpenGL configuration options.

• The window caption will be the name of the executing Python script (i.e., sys.argv[0]).

Windows are visible as soon as they are created, unless you give the visible=False argument to the
constructor. The following example shows how to create and display a window in two steps:

window = pyglet.window.Window(visible=False)
... perform some additional initialisation
window.set_visible()

Context configuration
The context of a window cannot be changed once created. There are several ways to control the context
that is created:

• Supply an already-created Context using the context argument:

context = config.create_context(share)
window = pyglet.window.Window(context=context)

• Supply a complete Config obtained from a Screen using the config argument. The context will be
created from this config and will share object space with the most recently created existing context:

config = screen.get_best_config(template)
window = pyglet.window.Window(config=config)

• Supply a template Config using the config argument. The context will use the best config obtained
from the default screen of the default display:

config = gl.Config(double_buffer=True)
window = pyglet.window.Window(config=config)

• Specify a Screen using the screen argument. The context will use a config created from default
template configuration and this screen:

screen = display.get_screens()[screen_number]
window = pyglet.window.Window(screen=screen)

Windowing

27

• Specify a Display using the display argument. The default screen on this display will be used to
obtain a context using the default template configuration:

display = platform.get_display(display_name)
window = pyglet.window.Window(display=display)

If a template Config is given, a Screen or Display may also be specified; however any other combination
of parameters overconstrains the configuration and some parameters will be ignored.

Fullscreen windows
If the fullscreen=True argument is given to the window constructor, the window will draw to an
entire screen rather than a floating window. No window border or controls will be shown, so you must
ensure you provide some other means to exit the application.

By default, the default screen on the default display will be used, however you can optionally specify
another screen to use instead. For example, the following code creates a fullscreen window on the
secondary screen:

screens = display.get_screens()
window = pyglet.window.Window(fullscreen=True, screens[1])

There is no way to create a fullscreen window that spans more than one window (for example, if you
wanted to create an immersive 3D environment across multiple monitors). Instead, you should create a
separate fullscreen window for each screen and attach identical event handlers to all windows.

Windows can be toggled in and out of fullscreen mode with the set_fullscreen method. For example, to
return to windowed mode from fullscreen:

window.set_fullscreen(False)

The previous window size and location, if any, will attempt to be restored, however the operating system
does not always permit this, and the window may have relocated.

Size and position
This section applies only to windows that are not fullscreen. Fullscreen windows always have the width
and height of the screen they fill.

You can specify the size of a window as the first two arguments to the window constructor. In the following
example, a window is created with a width of 800 pixels and a height of 600 pixels.

window = pyglet.window.Window(800, 600)

The "size" of a window refers to the drawable space within it, excluding any additional borders or title
bar drawn by the operating system.

You can allow the user to resize your window by specifying resizable=True in the constructor. If
you do this, you may also want to handle the on_resize event:

window = pyglet.window.Window(resizable=True)

@window.event
def on_resize(width, height):

Windowing

28

 print 'The window was resized to %dx%d' % (width, height)

You can specify a minimum and maximum size that the window can be resized to by the user with the
set_minimum_size and set_maximum_size methods:

window.set_minimum_size(320, 200)
window.set_maximum_size(1024, 768)

The window can also be resized programatically (even if the window is not user-resizable) with the set_size
method:

window.set_size(800, 600)

The window will initially be positioned by the operating system. Typically, it will use its own algorithm
to locate the window in a place that does not block other application windows, or cascades with them. You
can manually adjust the position of the window using the get_position and set_position methods:

x, y = window.get_location()
window.set_location(x + 20, y + 20)

Note that unlike the usual coordinate system in pyglet, the window location is relative to the top-left corner
of the desktop, as shown in the following diagram:

The position ond size of the window relative to the desktop.

Appearance

Window style
Non-fullscreen windows can be created in one of four styles: default, dialog, tool or borderless. Examples
of the appearances of each of these styles under Windows XP and Mac OS X 10.4 are shown below.

Style Windows XP Mac OS X

WINDOW_STYLE_DEFAULT

WINDOW_STYLE_DIALOG

WINDOW_STYLE_TOOL

Windowing

29

Non-resizable variants of these window styles may appear slightly different (for example, the maximize
button will either be disabled or absent).

Besides the change in appearance, the window styles affect how the window behaves. For example, tool
windows do not usually appear in the task bar and cannot receive keyboard focus. Dialog windows cannot
be minimized. Selecting the appropriate window style for your windows means your application will
behave correctly for the platform on which it is running, however that behaviour may not be consistent
across Windows, Linux and Mac OS X.

The appearance and behaviour of windows in Linux will vary greatly depending on the distribution,
window manager and user preferences.

Borderless windows are not decorated by the operating system at all, and have no way to be resized or
moved around the desktop. These are useful for implementing splash screens or custom window borders.

You can specify the style of the window in the Window constructor. Once created, the window style cannot
be altered:

window = pyglet.window.Window(style=window.Window.WINDOW_STYLE_DIALOG)

Caption
The window's caption appears in its title bar and task bar icon (on Windows and some Linux window
managers). You can set the caption during window creation or at any later time using the set_caption
method:

window = pyglet.window.Window(caption='Initial caption')
window.set_caption('A different caption')

Icon
The window icon appears in the title bar and task bar icon on Windows and Linux, and in the dock icon
on Mac OS X. Dialog and tool windows do not necessarily show their icon.

Windows, Mac OS X and the Linux window managers each have their own preferred icon sizes:

Windows XP • A 16x16 icon for the title bar and task bar.

• A 32x32 icon for the Alt+Tab switcher.

Mac OS X • Any number of icons of resolutions 16x16, 24x24, 32x32,
48x48, 72x72 and 128x128. The actual image displayed will be
interpolated to the correct size from those provided.

Linux • No constraints, however most window managers will use a 16x16
and a 32x32 icon in the same way as Windows XP.

The Window.set_icon method allows you to set any number of images as the icon. pyglet will select the
most appropriate ones to use and apply them to the window. If an alternate size is required but not provided,
pyglet will scale the image to the correct size using a simple interpolation algorithm.

The following example provides both a 16x16 and a 32x32 image as the window icon:

window = pyglet.window.Window()
icon1 = pyglet.image.load('16x16.png')
icon2 = pyglet.image.load('32x32.png')

Windowing

30

window.set_icon(icon1, icon2)

You can use images in any format supported by pyglet, however it is recommended to use a format that
supports alpha transparency such as PNG. Windows .ico files are supported only on Windows, so their
use is discouraged. Mac OS X .icons files are not supported at all.

Note that the icon that you set at runtime need not have anything to do with the application icon, which
must be encoded specially in the application binary (see Self-contained executables).

Visibility
Windows have several states of visibility. Already shown is the visible property which shows or hides
the window.

Windows can be minimized, which is equivalent to hiding them except that they still appear on the taskbar
(or are minimised to the dock, on OS X). The user can minimize a window by clicking the appropriate
button in the title bar. You can also programmatically minimize a window using the minimize method
(there is also a corresponding maximize method).

When a window is made visible the on_show event is triggered. When it is hidden the on_hide event is
triggered. On Windows and Linux these events will only occur when you manually change the visibility
of the window or when the window is minimized or restored. On Mac OS X the user can also hide or show
the window (affecting visibility) using the Command+H shortcut.

Subclassing Window
A useful pattern in pyglet is to subclass Window for each type of window you will display, or as your main
application class. There are several benefits:

• You can load font and other resources from the constructor, ensuring the OpenGL context has already
been created.

• You can add event handlers simply be defining them on the class. The on_resize event will be called
as soon as the window is created (this doesn't usually happen, as you must create the window before
you can attach event handlers).

• There is reduced need for global variables, as you can maintain application state on the window.

The following example shows the same "Hello World" application as presented in Writing a pyglet
application, using a subclass of Window:

class HelloWorldWindow(pyglet.window.Window):
 def __init__(self):
 super(HelloWorldWindow, self).__init__()

 self.label = pyglet.text.Label('Hello, world!')

 def on_draw(self):
 self.clear()
 self.label.draw()

if __name__ == '__main__':
 window = HelloWorldWindow()
 pyglet.app.run()

Windowing

31

This example program is located in examples/programming_guide/window_subclass.py.

Windows and OpenGL contexts
Every window in pyglet has an associated OpenGL context. Specifying the configuration of this context
has already been covered in Creating a window. Drawing into the OpenGL context is the only way to
draw into the window's client area.

Double-buffering
If the window is double-buffered (i.e., the configuration specified double_buffer=True, the default),
OpenGL commands are applied to a hidden back buffer. This back buffer can be copied to the window
using the flip method. If you are using the standard pyglet.app.run or pyglet.app.EventLoop event loop,
this is taken care of automatically after each on_draw event.

If the window is not double-buffered, the flip operation is unnecessary, and you should remember only to
call glFlush to ensure buffered commands are executed.

Vertical retrace synchronisation
Double-buffering eliminates one cause of flickering: the user is unable to see the image as it painted, only
the final rendering. However, it does introduce another source of flicker known as "tearing".

Tearing becomes apparent when display fast-moving objects in an animation. The buffer flip occurs while
the video display is still reading data from the framebuffer, causing the top half of the display to show
the previous frame while the bottom half shows the updated frame. If you are updating the framebuffer
particularly quickly you may notice three or more such "tears" in the display.

pyglet provides a way to avoid tearing by synchronising buffer flips to the video refresh rate. This is enabled
by default, but can be set or unset manually at any time with the vsync (vertical retrace synchronisation)
property. A window is created with vsync initially disabled in the following example:

window = pyglet.window.Window(vsync=False)

It is usually desirable to leave vsync enabled, as it results in flicker-free animation. There are some use-
cases where you may want to disable it, for example:

• Profiling an application. Measuring the time taken to perform an operation will be affected by the time
spent waiting for the video device to refresh, which can throw off results. You should disable vsync if
you are measuring the performance of your application.

• If you cannot afford for your application to block. If your application run loop needs to quickly poll a
hardware device, for example, you may want to avoid blocking with vsync.

Note that some older video cards do not support the required extensions to implement vsync; this will
appear as a warning on the console but is otherwise ignored.

32

The application event loop
In order to let pyglet process operating system events such as mouse and keyboard events, applications
need to enter an application event loop. The event loop continuously checks for new events, dispatches
those events, and updates the contents of all open windows.

pyglet provides an application event loop that is tuned for performance and low power usage on Windows,
Linux and Mac OS X. Most applications need only call:

pyglet.app.run()

to enter the event loop after creating their initial set of windows and attaching event handlers. The run
function does not return until all open windows have been closed, or until pyglet.app.exit() is
called.

The pyglet application event loop dispatches window events (such as for mouse and keyboard input) as
they occur and dispatches the on_draw event to each window after every iteration through the loop.

To have additional code run periodically or every iteration through the loop, schedule functions on the
clock (see Scheduling functions for future execution). pyglet ensures that the loop iterates only as often as
necessary to fulfil all scheduled functions and user input.

Customising the event loop
The pyglet event loop is encapsulated in the EventLoop class, which provides several hooks that can
be overridden for customising its behaviour. This is recommended only for advanced users -- typical
applications and games are unlikely to require this functionality.

To use the EventLoop class directly, instantiate it and call run:

pyglet.app.EventLoop().run()

Only one EventLoop can be running at a time; when the run method is called the module variable
pyglet.app.event_loop is set to the running instance. Other pyglet modules such as pyglet.window depend
on this.

Event loop events

You can listen for several events on the event loop instance. The most useful of these is on_window_close,
which is dispatched whenever a window is closed. The default handler for this event exits the event loop
if there are no more windows. The following example overrides this behaviour to exit the application
whenever any window is closed:

event_loop = pyglet.app.EventLoop()

@event_loop.event
def on_window_close(window):
 event_loop.exit()
 return pyglet.event.EVENT_HANDLED

event_loop.run()

The application event loop

33

Overriding the default idle policy
The EventLoop.idle method is called every iteration of the event loop. It is responsible for calling scheduled
clock functions, redrawing windows, and deciding how idle the application is. You can override this
method if you have specific requirements for tuning the performance of your application; especially if it
uses many windows.

The default implementation has the following algorithm:

1. Call clock.tick with poll=True to call any scheduled functions.

2. Dispatch the on_draw event and call flip on every open window.

3. Return the value of clock.get_sleep_time.

The return value of the method is the number of seconds until the event loop needs to iterate again (unless
there is an earlier user-input event); or None if the loop can wait for input indefinitely.

Note that this default policy causes every window to be redrawn during every user event -- if you have more
knowledge about which events have an effect on which windows you can improve on the performance
of this method.

Dispatching events manually
Earlier versions of pyglet and certain other windowing toolkits such as PyGame and SDL require
the application developer to write their own event loop. This "manual" event loop is usually just an
inconvenience compared to pyglet.app.run, but can be necessary in some situations when combining pyglet
with other toolkits.

A simple event loop usually has the following form:

while True:
 pyglet.clock.tick()

 for window in pyglet.app.windows:
 window.switch_to()
 window.dispatch_events()
 window.dispatch_event('on_draw')
 window.flip()

The dispatch_events method checks the window's operating system event queue for user input and
dispatches any events found. The method does not wait for input -- if ther are no events pending, control
is returned to the program immediately.

The call to pyglet.clock.tick() is required for ensuring scheduled functions are called, including the internal
data pump functions for playing sounds and video.

Developers are strongly discouraged from writing pyglet applications with event loops like this:

• The EventLoop class provides plenty of hooks for most toolkits to be integrated without needing to
resort to a manual event loop.

• Because EventLoop is tuned for specific operating systems, it is more responsive to user events, and
continues calling clock functions while windows are being resized, and (on Mac OS X) the menu bar
is being tracked.

The application event loop

34

• It is difficult to write a manual event loop that does not consume 100% CPU while still remaining
responsive to user input.

The capability for writing manual event loops remains for legacy support and extreme circumstances.

35

The pyglet event framework
The pyglet.window, pyglet.media, pyglet.app and pyglet.text modules make use of a consistent event
pattern, which provides several ways to attach event handlers to objects. You can also reuse this pattern
in your own classes easily.

Throughout this documentation, an "event dispatcher" is an object that has events it needs to notify other
objects about, and an "event handler" is some code that can be attached to a dispatcher.

Setting event handlers
An event handler is simply a function with a formal parameter list corresponding to the event type. For
example, the Window.on_resize event has the parameters (width, height), so an event handler for
this event could be:

def on_resize(width, height):
 pass

The Window class subclasses EventDispatcher, which enables it to have event handlers attached to it. The
simplest way to attach an event handler is to set the corresponding attribute on the object:

window = pyglet.window.Window()

def on_resize(width, height):
 pass
window.on_resize = on_resize

Note that you need not even name your function the same as the event.

While this technique is straight-forward, it requires you to write the name of the event three times for the
one function, which can get tiresome. pyglet provides a shortcut using the event decorator:

window = window.Window()

@window.event
def on_resize(width, height):
 pass

You can even give the event handler another name if necessary:

@window.event('on_resize')
def handle_resize_event(width, height):
 pass

As shown in Subclassing Window, you can also attach event handlers by subclassing the event dispatcher
and adding the event handler as a method:

class MyWindow(pyglet.window.Window):
 def on_resize(self, width, height):
 pass

In this case you must use the name of the event handler as the method name.

The pyglet event framework

36

Stacking event handlers
It is often convenient to attach more than one event handler for an event. EventDispatcher allows you to
stack event handlers upon one another, rather than replacing them outright. The event will propogate from
the top of the stack to the bottom, but can be stopped by any handler along the way.

To push an event handler onto the stack, use the push_handlers method:

def on_key_press(symbol, modifiers):
 if symbol == key.SPACE
 fire_laser()

window.push_handlers(on_key_press)

One use for pushing handlers instead of setting them is to handle different parameterisations of events in
different functions. In the above example, if the spacebar is pressed, the laser will be fired. After the event
handler returns control is passed to the next handler on the stack, which on a Window is a function that
checks for the ESC key and sets the has_exit attribute if it is pressed. By pushing the event handler
instead of setting it, the application keeps the default behaviour while adding additional functionality.

You can prevent the remaining event handlers in the stack from receiving the event by returning a true
value. The following event handler, when pushed onto the window, will prevent the escape key from
exiting the program:

def on_key_press(symbol, modifiers):
 if symbol == key.ESCAPE:
 return True

window.push_handlers(on_key_press)

You can push more than one event handler at a time, which is especially useful when coupled with the
pop_handlers function. In the following example, when the game starts some additional event handlers
are pushed onto the stack. When the game ends (perhaps returning to some menu screen) the handlers are
popped off in one go:

def start_game():
 def on_key_press(symbol, modifiers):
 print 'Key pressed in game'
 return True

 def on_mouse_press(x, y, button, modifiers):
 print 'Mouse button pressed in game'
 return True

 window.push_handlers(on_key_press, on_mouse_press)

def end_game():
 window.pop_handlers()

Note that you do not specify which handlers to pop off the stack -- the entire top "level" (consisting of all
handlers specified in a single call to push_handlers) is popped.

You can apply the same pattern in an object-oriented fashion by grouping related event handlers in a single
class. In the following example, a GameEventHandler class is defined. An instance of that class can
be pushed on and popped off of a window:

The pyglet event framework

37

class GameEventHandler(object):
 def on_key_press(self, symbol, modifiers):
 print 'Key pressed in game'
 return True

 def on_mouse_press(self, x, y, button, modifiers):
 print 'Mouse button pressed in game'
 return True

game_handlers = GameEventHandler()

def start_game()
 window.push_handlers(game_handlers)

def stop_game()
 window.pop_handlers()

Creating your own event dispatcher
pyglet provides only the Window and Player event dispatchers, but exposes a public interface for creating
and dispatching your own events.

The steps for creating an event dispatcher are:

1. Subclass EventDispatcher

2. Call the register_event_type class method on your subclass for each event your subclass will recognise.

3. Call dispatch_event to create and dispatch an event as needed.

In the following example, a hypothetical GUI widget provides several events:

class ClankingWidget(pyglet.event.EventDispatcher):
 def clank(self):
 self.dispatch_event('on_clank')

 def click(self, clicks):
 self.dispatch_event('on_clicked', clicks)

 def on_clank(self):
 print 'Default clank handler.'

ClankingWidget.register_event_type('on_clank')
ClankingWidget.register_event_type('on_clicked')

Event handlers can then be attached as described in the preceding sections:

widget = ClankingWidget()

@widget.event
def on_clank():
 pass

@widget.event
def on_clicked(clicks):

The pyglet event framework

38

 pass

def override_on_clicked(clicks):
 pass

widget.push_handlers(on_clicked=override_on_clicked)

The EventDispatcher takes care of propogating the event to all attached handlers or ignoring it if there
are no handlers for that event.

There is zero instance overhead on objects that have no event handlers attached (the event stack is created
only when required). This makes EventDispatcher suitable for use even on light-weight objects that may
not always have handlers. For example, Player is an EventDispatcher even though potentially hundreds
of these objects may be created and destroyed each second, and most will not need an event handler.

Implementing the Observer pattern
The Observer design pattern [Gamma,etal.,`DesignPatterns`Addison-Wesley1994], also known as
Publisher/Subscriber, is a simple way to decouple software components. It is used extensively in many
large software projects; for example, Java's AWT and Swing GUI toolkits and the Python logging
module; and is fundamental to any Model-View-Controller architecture.

EventDispatcher can be used to easily add observerable components to your application. The following
example recreates the ClockTimer example from Design Patterns (pages 300-301), though without needing
the bulky Attach, Detach and Notify methods:

The subject
class ClockTimer(pyglet.event.EventDispatcher):
 def tick(self):
 self.dispatch_events('on_update')
ClockTimer.register_event('on_update')

Abstract observer class
class Observer(object):
 def __init__(self, subject):
 subject.push_handlers(self)

Concrete observer
class DigitalClock(Observer):
 def on_update(self):
 pass

Concrete observer
class AnalogClock(Observer):
 def on_update(self):
 pass

timer = ClockTimer()
digital_clock = DigitalClock(timer)
analog_clock = AnalogClock(timer)

The two clock objects will be notified whenever the timer is "ticked", though neither the timer nor the
clocks needed prior knowledge of the other. During object construction any relationships between subjects
and observers can be created.

Gamma,etal.,`DesignPatterns`Addison-Wesley1994
Gamma,etal.,`DesignPatterns`Addison-Wesley1994

The pyglet event framework

39

Documenting events
pyglet uses a modified version of Epydoc [http://epydoc.sourceforge.net/] to construct its API
documentation. One of these modifications is the inclusion of an "Events" summary for event dispatchers.
If you plan on releasing your code as a library for others to use, you may want to consider using the same
tool to document code.

The patched version of Epydoc is included in the pyglet repository under trunk/tools/epydoc (it is
not included in distributions). It has special notation for document event methods, and allows conditional
execution when introspecting source code.

If the sys.is_epydoc attribute exists and is True, the module is currently being introspected for
documentation. pyglet places event documentation only within this conditional, to prevent extraneous
methods appearing on the class.

To document an event, create a method with the event's signature and add a blank event field to the
docstring:

import sys

class MyDispatcher(object):
 if getattr(sys, 'is_epydoc'):
 def on_update():
 '''The object was updated.

 :event:
 '''

Note that the event parameters should not include self. The function will appear in the "Events" table
and not as a method.

http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/

40

Working with the keyboard
pyglet has support for low-level keyboard input suitable for games as well as locale- and device-
independent Unicode text entry.

Keyboard input requires a window which has focus. The operating system usually decides which
application window has keyboard focus. Typically this window appears above all others and may be
decorated differently, though this is platform-specific (for example, Unix window managers sometimes
couple keyboard focus with the mouse pointer).

You can request keyboard focus for a window with the activate method, but you should not rely on this
-- it may simply provide a visual cue to the user indicating that the window requires user input, without
actually getting focus.

Windows created with the WINDOW_STYLE_BORDERLESS or WINDOW_STYLE_TOOL style cannot
receive keyboard focus.

It is not possible to use pyglet's keyboard or text events without a window; consider using Python built-in
functions such as raw_input instead.

Keyboard events
The Window.on_key_press and Window.on_key_release events are fired when any key on the keyboard is
pressed or released, respectively. These events are not affected by "key repeat" -- once a key is pressed
there are no more events for that key until it is released.

Both events are parameterised by the same arguments:

def on_key_press(symbol, modifiers):
 pass

def on_key_release(symbol, modifiers):
 pass

Defined key symbols
The symbol argument is an integer that represents a "virtual" key code. It does //not// correspond to any
particular numbering scheme; in particular the symbol is //not// an ASCII character code.

pyglet has key symbols that are hardware and platform independent for many types of keyboard. These
are defined in pyglet.window.key as constants. For example, the Latin-1 alphabet is simply the letter itself:

key.A
key.B
key.C
...

The numeric keys have an underscore to make them valid identifiers:

key._1
key._2
key._3
...

Working with the keyboard

41

Various control and directional keys are identified by name:

key.ENTER or key.RETURN
key.SPACE
key.BACKSPACE
key.DELETE
key.MINUS
key.EQUAL
key.BACKSLASH

key.LEFT
key.RIGHT
key.UP
key.DOWN
key.HOME
key.END
key.PAGEUP
key.PAGEDOWN

key.F1
key.F2
...

Keys on the number pad have separate symbols:

key.NUM_1
key.NUM_2
...
key.NUM_EQUAL
key.NUM_DIVIDE
key.NUM_MULTIPLY
key.NUM_MINUS
key.NUM_PLUS
key.NUM_DECIMAL
key.NUM_ENTER

Some modifier keys have separate symbols for their left and right sides (however they cannot all be
distinguished on all platforms):

key.LCTRL
key.RCTRL
key.LSHIFT
key.RSHIFT
...

Key symbols are independent of any modifiers being held down. For example, lower-case and upper-case
letters both generate the A symbol. This is also true of the number keypad.

Modifiers
The modifiers that are held down when the event is generated are combined in a bitwise fashion and
provided in the modifiers parameter. The modifier constants defined in pyglet.window.key are:

MOD_SHIFT
MOD_CTRL

Working with the keyboard

42

MOD_ALT Not available on Mac OS X
MOD_WINDOWS Available on Windows only
MOD_COMMAND Available on Mac OS X only
MOD_OPTION Available on Mac OS X only
MOD_CAPSLOCK
MOD_NUMLOCK
MOD_SCROLLLOCK
MOD_ACCEL Equivalent to MOD_CTRL, or MOD_COMMAND on Mac OS X.

For example, to test if the shift key is held down:

if modifiers & MOD_SHIFT:
 pass

Unlike the corresponding key symbols, it is not possible to determine whether the left or right modifier is
held down (though you could emulate this behaviour by keeping track of the key states yourself).

User-defined key symbols
pyglet does not define key symbols for every keyboard ever made. For example, non-Latin languages will
have many keys not recognised by pyglet (however, their Unicode representation will still be valid, see
Text and motion events). Even English keyboards often have additional so-called "OEM" keys added by
the manufacturer, which might be labelled "Media", "Volume" or "Shopping", for example.

In these cases pyglet will create a key symbol at runtime based on the hardware scancode of the key. This
is guaranteed to be unique for that model of keyboard, but may not be consistent across other keyboards
with the same labelled key.

The best way to use these keys is to record what the user presses after a prompt, and then check for that
same key symbol. Many commercial games have similar functionality in allowing players to set up their
own key bindings.

Remembering key state
pyglet provides the convenience class KeyStateHandler for storing the current keyboard state. This can be
pushed onto the event handler stack of any window and subsequently queried as a dict:

from pyglet.window import key

window = pyglet.window.Window()
keys = key.KeyStateHandler()
window.push_handlers(keys)

Check if the spacebar is currently pressed:
if keys[key.SPACE]:
 pass

Text and motion events
pyglet decouples the keys that the user presses from the Unicode text that is input. There are several
benefits to this:

• The complex task of mapping modifiers and key symbols to Unicode characters is taken care of
automatically and correctly.

Working with the keyboard

43

• Key repeat is applied to keys held down according to the user's operating system preferences.

• Dead keys and compose keys are automatically interpreted to produce diacritic marks or combining
characters.

• Keyboard input can be routed via an input palette, for example to input characters from Asian languages.

• Text input can come from other user-defined sources, such as handwriting or voice recognition.

The actual source of input (i.e., which keys were pressed, or what input method was used) should be
considered outside of the scope of the application -- the operating system provides the necessary services.

When text is entered into a window, the on_text event is fired:

def on_text(text):
 pass

The only parameter provided is a Unicode string. For keyboard input this will usually be one character
long, however more complex input methods such as an input palette may provide an entire word or phrase
at once.

You should always use the on_text event when you need to determine a string from a sequence of
keystrokes. Conversely, you never use on_text when you require keys to be pressed (for example, to control
the movement of the player in a game).

Motion events
In addition to entering text, users press keys on the keyboard to navigate around text widgets according
to well-ingrained conventions. For example, pressing the left arrow key moves the cursor one character
to the left.

While you might be tempted to use the on_key_press event to capture these events, there are a couple of
problems:

• Key repeat events are not generated for on_key_press, yet users expect that holding down the left arrow
key will eventually move the character to the beginning of the line.

• Different operating systems have different conventions for the behaviour of keys. For example, on
Windows it is customary for the Home key to move the cursor to the beginning of the line, whereas on
Mac OS X the same key moves to the beginning of the document.

pyglet windows provide the on_text_motion event, which takes care of these problems by abstracting away
the key presses and providing your application only with the intended cursor motion:

def on_text_motion(motion):
 pass

motion is an integer which is a constant defined in pyglet.window.key. The following table shows the
defined text motions and their keyboard mapping on each operating system.

Constant Behaviour Windows/
Linux

Mac OS X

MOTION_UP Move the cursor
up

Up Up

MOTION_DOWN Move the cursor
down

Down Down

Working with the keyboard

44

Constant Behaviour Windows/
Linux

Mac OS X

MOTION_LEFT Move the cursor
left

Left Left

MOTION_RIGHT Move the cursor
right

Right Right

MOTION_PREVIOUS_WORD Move the cursor
to the previuos
word

Ctrl + Left Option + Left

MOTION_NEXT_WORD Move the cursor
to the next word

Ctrl + Right Option + Right

MOTION_BEGINNING_OF_LINEMove the cursor
to the beginning
of the current
line

Home Command +
Left

MOTION_END_OF_LINE Move the cursor
to the end of the
current line

End Command +
Right

MOTION_PREVIOUS_PAGE Move to the
previous page

Page Up Page Up

MOTION_NEXT_PAGE Move to the
next page

Page Down Page Down

MOTION_BEGINNING_OF_FILEMove to the
beginning of the
document

Ctrl + Home Home

MOTION_END_OF_FILE Move to the end
of the document

Ctrl + End End

MOTION_BACKSPACE Delete the
previous
character

Backspace Backspace

MOTION_DELETE Delete the next
character, or
the current
character

Delete Delete

Keyboard exclusivity
Some keystrokes or key combinations normally bypass applications and are handled by the operating
system. Some examples are Alt+Tab (Command+Tab on Mac OS X) to switch applications and the keys
mapped to Expose on Mac OS X.

You can disable these hot keys and have them behave as ordinary keystrokes for your application. This
can be useful if you are developing a kiosk application which should not be closed, or a game in which it
is possible for a user to accidentally press one of these keys.

To enable this mode, call set_exclusive_keyboard for the window on which it should apply. On Mac OS
X the dock and menu bar will slide out of view while exclusive keyboard is activated.

The following restrictions apply on Windows:

Working with the keyboard

45

• Most keys are not disabled: a user can still switch away from your application using Ctrl+Escape,
Alt+Escape, the Windows key or Ctrl+Alt+Delete. Only the Alt+Tab combination is disabled.

The following restrictions apply on Mac OS X:

• The power key is not disabled.

Use of this function is not recommended for general release applications or games as it violates user-
interface conventions.

46

Working with the mouse
All pyglet windows can recieve input from a 3 button mouse with a 2 dimensional scroll wheel. The mouse
pointer is typically drawn by the operating system, but you can override this and request either a different
cursor shape or provide your own image or animation.

Mouse events
All mouse events are dispatched by the window which receives the event from the operating system.
Typically this is the window over which the mouse cursor is, however mouse exclusivity and drag
operations mean this is not always the case.

The coordinate space for the mouse pointer's location is relative to the bottom-left corner of the window,
with increasing Y values approaching the top of the screen (note that this is "upside-down" compared with
many other windowing toolkits, but is consistent with the default OpenGL projection in pyglet).

The coordinate space for the mouse pointer.

The most basic mouse event is on_mouse_motion which is dispatched every time the mouse moves:

def on_mouse_motion(x, y, dx, dy):
 pass

The x and y parameters give the coordinates of the mouse pointer, relative to the bottom-left corner of
the window.

The event is dispatched every time the operating system registers a mouse movement. This is not
necessarily once for every pixel moved -- the operating system typically samples the mouse at a fixed
frequency, and it is easy to move the mouse faster than this. Conversely, if your application is not
processing events fast enough you may find that several queued-up mouse events are dispatched in a single
Window.dispatch_events call. There is no need to concern yourself with either of these issues; the latter
rarely causes problems, and the former can not be avoided.

Many games are not concerned with the actual position of the mouse cursor, and only need to know in
which direction the mouse has moved. For example, the mouse in a first-person game typically controls
the direction the player looks, but the mouse pointer itself is not displayed.

The dx and dy parameters are for this purpose: they give the distance the mouse travelled along each axis
to get to its present position. This can be computed naively by storing the previous x and y parameters after
every mouse event, but besides being tiresome to code, it does not take into account the effects of other
obscuring windows. It is best to use the dx and dy parameters instead.

The following events are dispatched when a mouse button is pressed or released, or the mouse is moved
while any button is held down:

Working with the mouse

47

def on_mouse_press(x, y, button, modifiers):
 pass

def on_mouse_release(x, y, button, modifiers):
 pass

def on_mouse_drag(x, y, dx, dy, buttons, modifiers):
 pass

The x, y, dx and dy parameters are as for the on_mouse_motion event. The press and release events do
not require dx and dy parameters as they would be zero in this case. The modifiers parameter is as for the
keyboard events, see Working with the keyboard.

The button parameter signifies which mouse button was pressed, and is one of the following constants:

pyglet.window.mouse.LEFT
pyglet.window.mouse.MIDDLE
pyglet.window.mouse.RIGHT

The buttons parameter in on_mouse_drag is a bitwise combination of all the mouse buttons currently held
down. For example, to test if the user is performing a drag gesture with the left button:

from pyglet.window import mouse

def on_mouse_drag(x, y, dx, dy, buttons, modifiers):
 if buttons & mouse.LEFT:
 pass

When the user begins a drag operation (i.e., pressing and holding a mouse button and then moving the
mouse), the window in which they began the drag will continue to receive the on_mouse_drag event as
long as the button is held down. This is true even if the mouse leaves the window. You generally do not
need to handle this specially: it is a convention among all operating systems that dragging is a gesture
rather than a direct manipulation of the user interface widget.

There are events for when the mouse enters or leaves a window:

def on_mouse_enter(x, y):
 pass

def on_mouse_leave(x, y):
 pass

The coordinates for on_mouse_leave will lie outside of your window. These events are not dispatched
while a drag operation is taking place.

The mouse scroll wheel generates the on_mouse_scroll event:

def on_mouse_scroll(x, y, scroll_x, scroll_y):
 pass

The scroll_y parameter gives the number of "clicks" the wheel moved, with positive numbers indicating
the wheel was pushed forward. The scroll_x parameter is 0 for most mice, however some new mice such
as the Apple Mighty Mouse use a ball instead of a wheel; the scroll_x parameter gives the horizontal
movement in this case. The scale of these numbers is not known; it is typically set by the user in their
operating system preferences.

Working with the mouse

48

Changing the mouse cursor
The mouse cursor can be set to one of the operating system cursors, a custom image, or hidden completely.
The change to the cursor will be applicable only to the window you make the change to. To hide the mouse
cursor, call Window.set_mouse_visible:

window = pyglet.window.Window()
window.set_mouse_visible(False)

This can be useful if the mouse would obscure text that the user is typing. If you are hiding the mouse
cursor for use in a game environment, consider making the mouse exclusive instead; see Mouse exclusivity,
below.

Use Window.set_mouse_cursor to change the appearance of the mouse cursor. A mouse cursor
is an instance of MouseCursor. You can obtain the operating system-defined cursors with
Window.get_system_mouse_cursor:

cursor = window.get_system_mouse_cursor(win.CURSOR_HELP)
window.set_mouse_cursor(cursor)

The cursors that pyglet defines are listed below, along with their typical appearance on Windows and Mac
OS X. The pointer image on Linux is dependent on the window manager.

Constant Windows XP Mac OS X

CURSOR_DEFAULT

CURSOR_CROSSHAIR

CURSOR_HAND

CURSOR_HELP

CURSOR_NO

CURSOR_SIZE

CURSOR_SIZE_DOWN

CURSOR_SIZE_DOWN_LEFT

CURSOR_SIZE_DOWN_RIGHT

CURSOR_SIZE_LEFT

CURSOR_SIZE_LEFT_RIGHT

CURSOR_SIZE_RIGHT

CURSOR_SIZE_UP

CURSOR_SIZE_UP_DOWN

CURSOR_SIZE_UP_LEFT

CURSOR_SIZE_UP_RIGHT

CURSOR_TEXT

CURSOR_WAIT

CURSOR_WAIT_ARROW

Working with the mouse

49

Alternatively, you can use your own image as the mouse cursor. Use pyglet.image.load to load the image,
then create an ImageMouseCursor with the image and "hot-spot" of the cursor. The hot-spot is the point
of the image that corresponds to the actual pointer location on screen, for example, the point of the arrow:

image = pyglet.image.load('cursor.png')
cursor = pyglet.window.ImageMouseCursor(image, 16, 8)
window.set_mouse_cursor(cursor)

You can even render a mouse cursor directly with OpenGL. You could draw a 3-dimensional cursor, or
a particle trail, for example. To do this, subclass MouseCursor and implement your own draw method.
The draw method will be called with the default pyglet window projection, even if you are using another
projection in the rest of your application.

Mouse exclusivity
It is possible to take complete control of the mouse for your own application, preventing it being used to
activate other applications. This is most useful for immersive games such as first-person shooters.

When you enable mouse-exclusive mode, the mouse cursor is no longer available. It is not merely hidden
-- no amount of mouse movement will make it leave your application. Because there is no longer a mouse
cursor, the x and y parameters of the mouse events are meaningless; you should use only the dx and dy
parameters to determine how the mouse was moved.

Activate mouse exclusive mode with set_exclusive_mouse:

window = pyglet.window.Window()
window.set_exclusive_mouse(True)

You should activate mouse exclusive mode even if your window is full-screen: it will prevent the window
"hitting" the edges of the screen, and behave correctly in multi-monitor setups (a common problem with
commercial full-screen games is that the mouse is only hidden, meaning it can accidentally travel onto the
other monitor where applications are still visible).

Note that on Linux setting exclusive mouse also disables Alt+Tab and other hotkeys for switching
applications. No workaround for this has yet been discovered.

50

Keeping track of time
pyglet's clock module provides functionality for scheduling functions for periodic or one-shot future
execution and for calculating and displaying the application frame rate.

Calling functions periodically
pyglet applications begin execution with:

pyglet.app.run()

Once called, this function doesn't return until the application windows have been closed. This may leave
you wondering how to execute code while the application is running.

Typical applications need to execute code in only three circumstances:

• A user input event (such as a mouse movement or key press) has been generated. In this case the
appropriate code can be attached as an event handler to the window.

• An animation or other time-dependent system needs to update the position or parameters of an object.
We'll call this a "periodic" event.

• A certain amount of time has passed, perhaps indicating that an operation has timed out, or that a dialog
can be automatically dismissed. We'll call this a "one-shot" event.

To have a function called periodically, for example, once every 0.1 seconds:

def update(dt):
 # ...
pyglet.clock.schedule_interval(update, 0.1)

The dt parameter gives the number of seconds (due to latency, load and timer inprecision, this might be
slightly more or less than the requested interval).

Scheduling functions with a set interval is ideal for animation, physics simulation, and game state updates.
pyglet ensures that the application does not consume more resources than necessary to execute the
scheduled functions in time.

Rather than "limiting the frame rate", as required in other toolkits, simply schedule all your update
functions for no less than the minimum period your application or game requires. For example, most games
need not run at more than 60Hz (60 times a second) for imperceptibly smooth animation, so the interval
given to schedule_interval would be 1/60.0 (or more).

If you are writing a benchmarking program or otherwise wish to simply run at the highest possible
frequency, use schedule:

def update(dt):
 # ...
pyglet.clock.schedule(update)

By default pyglet window buffer swaps are synchronised to the display refresh rate, so you may also want
to disable set_vsync.

For one-shot events, use schedule_once:

def dismiss_dialog(dt):

Keeping track of time

51

 # ...

Dismiss the dialog after 5 seconds.
pyglet.clock.schedule_once(dismiss_dialog, 5.0)

To stop a scheduled function from being called, including cancelling a periodic function, use
pyglet.clock.unschedule.

Animation techniques
Every scheduled function takes a dt parameter, giving the actual "wall clock" time that passed since the
previous invocation (or the time the function was scheduled, if it's the first period). This parameter can
be used for numerical integration.

For example, a non-accelerating particle with velocity v will travel some distance over a change in time
dt. This distance is calculated as v * dt. Similarly, a particle under constant acceleration a will have
a change in velocity of a * dt.

The following example demonstrates a simple way to move a sprite across the screen at exactly 10 pixels
per second:

sprite = pyglet.sprite.Sprite(image)
sprite.dx = 10.0

def update(dt):
 sprite.x += sprite.dx * dt
pyglet.clock.schedule_interval(update, 1/60.0) # update at 60Hz

This is a robust technique for simple animation, as the velocity will remain constant regardless of the speed
or load of the computer.

Some examples of other common animation variables are given in the table below.

Animation parameter Distance Velocity

Rotation Degrees Degrees per second

Position Pixels Pixels per second

Keyframes Frame number Frames per second

The frame rate
Game performance is often measured in terms of the number of times the display is updated every second;
that is, the frames-per-second or FPS. You can determine your application's FPS with a single function call:

pyglet.clock.get_fps()

The value returned is more useful than simply taking the reciprocal of dt from a period function, as it is
averaged over a sliding window of several frames.

Displaying the frame rate
A simple way to profile your application performance is to display the frame rate while it is running.
Printing it to the console is not ideal as this will have a severe impact on performance. pyglet provides the
ClockDisplay class for displaying the frame rate with very little effort:

Keeping track of time

52

fps_display = pyglet.clock.ClockDisplay()

@window.event
def on_draw():
 window.clear()
 fps_display.draw()

By default the frame rate will be drawn in the bottom-right corner of the window in a semi-translucent large
font. See the ClockDisplay documentation for details on how to customise this, or even display another
clock value (such as the current time) altogether.

User-defined clocks
The default clock used by pyglet uses the system clock to determine the time (i.e., time.time()).
Separate clocks can be created, however, allowing you to use another time source. This can be useful for
implementing a separate "game time" to the real-world time, or for synchronising to a network time source
or a sound device.

Each of the clock functions are aliases for the methods on a global instance of clock.Clock. You can
construct or subclass your own Clock, which can then maintain its own schedule and framerate calculation.
See the class documentation for more details.

53

Displaying text
pyglet provides the font module for rendering high-quality antialiased Unicode glyphs efficiently. Any
installed font on the operating system can be used, or you can supply your own font with your application.

Text rendering is performed with the text module, which can display word-wrapped formatted text. There
is also support for interactive editing of text on-screen with a caret.

Simple text rendering
The following complete example creates a window that displays "Hello, World" centered vertically and
horizontally:

window = pyglet.window.Window()
label = pyglet.text.Label('Hello, world',
 font_name='Times New Roman',
 font_size=36,
 x=window.width//2, y=window.height//2,
 halign='center', valign='center')

@window.event
def on_draw():
 window.clear()
 label.draw()

pyglet.app.run()

The example demonstrates the most common uses of text rendering:

• The font name and size are specified directly in the constructor. Additional parameters exist for setting
the bold and italic styles and the color of the text.

• The position of the text is given by the x and y coordinates. The meaning of these coordinates is given
by the halign and valign parameters.

• The actual text is drawn with the Label.draw method. Labels can also be added to a graphics batch;
see Graphics for details.

Loading system fonts
To load a font you must know its family name. This is the name displayed in the font dialog of any
application. For example, all operating systems include the Times New Roman font. You must also specify
the font size to load, in points:

Load "Times New Roman" at 16pt
times = pyglet.font.load('Times New Roman', 16)

Bold and italic variants of the font can specified with keyword parameters:

times_bold = pyglet.font.load('Times New Roman', 16, bold=True)
times_italic = pyglet.font.load('Times New Roman', 16, italic=True)
times_bold_italic = pyglet.font.load('Times New Roman', 16,

Displaying text

54

 bold=True, italic=True)

For maximum compatibility on all platforms, you can specify a list of font names to load, in order of
preference. For example, many users will have installed the Microsoft Web Fonts pack, which includes
Verdana, but this cannot be guaranteed, so you might specify Arial or Helvetica as suitable alternatives:

sans_serif = pyglet.font.load(('Verdana', 'Helvetica', 'Arial'), 16)

If you do not particularly care which font is used, and just need to display some readable text, you can
specify None as the family name, which will load a default sans-serif font (Helvetica on Mac OS X, Arial
on Windows XP):

sans_serif = pyglet.font.load(None, 16)

Font sizes
When loading a font you must specify the font size it is to be rendered at, in points. Points are a somewhat
historical but conventional unit used in both display and print media. There are various conflicting
definitions for the actual length of a point, but pyglet uses the PostScript definition: 1 point = 1/72 inches.

Font resolution
The actual rendered size of the font on screen depends on the display resolution. pyglet uses a default DPI
of 96 on all operating systems. Most Mac OS X applications use a DPI of 72, so the font sizes will not
match up on that operating system. However, application developers can be assured that font sizes remain
consistent in pyglet across platforms.

The DPI can be specified directly in the pyglet.font.load function.

Determining font size
Once a font is loaded at a particular size, you can query its pixel size with the attributes:

Font.ascent
Font.descent

These measurements are shown in the diagram below.

Font metrics. Note that the descent is usually negative as it descends below the baseline.

You can calculate the distance between successive lines of text as:

ascent - descent + leading

where leading is the number of pixels to insert between each line of text.

Displaying text

55

Loading custom fonts
You can supply a font with your application if it's not commonly installed on the target platform. You
should ensure you have a license to distribute the font -- the terms are often specified within the font file
itself, and can be viewed with your operating system's font viewer.

Loading a custom font must be performed in two steps:

1. Let pyglet know about the additional font or font files.

2. Load the font by its family name.

For example, let's say you have the Action Man font in a file called action_man.ttf. The following
code will load an instance of that font:

pyglet.font.add_file('action_man.ttf')
action_man = pyglet.font.load('Action Man')

Fonts are often distributed in separate files for each variant. Action Man Bold would probably be distributed
as a separate file called action_man_bold.ttf; you need to let pyglet know about this as well:

font.add_file('action_man_bold.ttf')
action_man_bold = font.load('Action Man', bold=True)

Note that even when you know the filename of the font you want to load, you must specify the font's
family name to pyglet.font.load.

You need not have the file on disk to add it to pyglet; you can specify any file-like object supporting the
read method. This can be useful for extracting fonts from a resource archive or over a network.

If the custom font is distributed with your application, consider using the Application resources.

Supported font formats
pyglet can load any font file that the operating system natively supports. The list of supported formats is
shown in the table below.

Font Format Windows XP Mac OS X Linux
(FreeType)

TrueType (.ttf) X X X

PostScript Type 1 (.pfm, .pfb) X X X

Windows Bitmap (.fnt) X X

Mac OS X Data Fork Font (.dfont) X

OpenType (.ttf) 8 X

X11 font formats PCF, BDF,
SFONT

X

Bitstream PFR (.pfr) X
8All OpenType fonts are backward compatible with TrueType, so while the advanced OpenType features can
only be rendered with Mac OS X, the files can be used on any platform. pyglet does not currently make use
of the additional kerning and ligature information within OpenType fonts.

Displaying text

56

OpenGL font considerations
Text in pyglet is drawn using textured quads. Each font maintains a set of one or more textures, into which
glyphs are uploaded as they are needed. For most applications this detail is transparent and unimportant,
however some of the details of these glyph textures are described below for advanced users.

Context affinity
When a font is loaded, it immediately creates a texture in the current context's object space. Subsequent
textures may need to be created if there is not enough room on the first texture for all the glyphs. This is
done when the glyph is first requested.

pyglet always assumes that the object space that was active when the font was loaded is the active one
when any texture operations are performed. Normally this assumption is valid, as pyglet shares object
spaces between all contexts by default. There are a few situations in which this will not be the case, though:

• When explicitly setting the context share during context creation.

• When multiple display devices are being used which cannot support a shared context object space.

In any of these cases, you will need to reload the font for each object space that it's needed in. pyglet keeps
a cache of fonts, but does so per-object-space, so it knows when it can reuse an existing font instance or if
it needs to load it and create new textures. You will also need to ensure that an appropriate context is active
when any glyphs may need to be added (for example, when reading the width or height properties of Text).

Blend state
The glyph textures have an internal format of GL_ALPHA, which provides a simple way to recolour and
blend antialiased text simply by changing the vertex colors. pyglet makes very few assumptions about the
OpenGL state, and will not alter it besides changing the currently bound texture.

The following blend state is used for drawing font glyphs:

from pyglet.gl import *
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
glEnable(GL_BLEND)

All glyph textures use the GL_TEXTURE_2D target, so you should ensure that a higher priority target
such as GL_TEXTURE_3D is not enabled before trying to render text.

57

Images
pyglet provides functions for loading and saving images in various formats using native operating system
services. pyglet can also work with the Python Imaging Library [http://www.pythonware.com/products/
pil/] (PIL) for access to more file formats.

Loaded images can be efficiently provided to OpenGL as a texture, and OpenGL textures and framebuffers
can be retrieved as pyglet images to be saved or otherwise manipulated.

pyglet also provides an efficient and comprehensive Sprite class, for displaying images on the screen with
an optional transform.

Loading an image
Images can be loaded using the pyglet.image.load function:

kitten = pyglet.image.load('kitten.png')

If the image is distributed with your application, consider using the pyglet.resource module (see
Application resources).

Without any additional arguments, load will attempt to load the filename specified using any available
image decoder. This will allow you to load PNG, GIF, JPEG, BMP and DDS files, and possibly other files
as well, depending on your operating system and additional installed modules (see the next section for
details). If the image cannot be loaded, an ImageDecodeException will be raised.

You can load an image from any file-like object providing a read method by specifying the file keyword
parameter:

kitten_stream = open('kitten.png', 'rb')
kitten = pyglet.image.load('kitten.png', file=kitten_stream)

In this case the filename kitten.png is optional, but gives a hint to the decoder as to the file type (it
is otherwise unused).

pyglet provides the following image decoders:

Module Class Description

pyglet.image.codecs.dds DDSImageDecoderReads Microsoft
DirectDraw Surface
files containing
compressed textures

pyglet.image.codecs.gdiplus GDIPlusDecoder Uses Windows
GDI+ services to
decode images.

pyglet.image.codecs.gdkpixbuf2GdkPixbuf2ImageDecoderUses the GTK-2.0
GDK functions to
decode images.

pyglet.image.codecs.pil PILImageDecoder

http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/

Images

58

Module Class Description

Wrapper interface
around PIL Image
class.

pyglet.image.codecs.png PNGImageDecoderPNG decoder
written in pure
Python.

pyglet.image.codecs.quicktimeQuickTimeImageDecoderUses Mac OS
X QuickTime to
decode images.

Each of these classes registers itself with pyglet.image with the filename extensions it supports. The load
function will try each image decoder with a matching file extension first, before attempting the other
decoders. Only if every image decoder fails to load an image will ImageDecodeException be raised (the
origin of the exception will be the first decoder that was attempted).

You can override this behaviour and specify a particular decoding instance to use. For example, in the
following example the pure Python PNG decoder is always used rather than the operating system's decoder:

from pyglet.image.codecs.png import PNGImageDecoder
kitten = pyglet.image.load('kitten.png', decoder=PNGImageDecoder())

This use is not recommended unless your application has to work around specific deficiences in an
operating system decoder.

Supported image formats
The following table lists the image formats that can be loaded on each operating system. If PIL is installed,
any additional formats it supports can also be read. See the Python Imaging Library Handbook [http://
www.pythonware.com/library/pil/handbook/index.htm] for a list of such formats.

Extension Description Windows
XP

Mac OS X Linux 9

.bmp Windows
Bitmap

X X X

.dds Microsoft
DirectDraw

Surface 10

X X X

.exif Exif X

.gif Graphics
Interchange
Format

X X X

.jpg .jpeg JPEG/JIFF
Image

X X X

.jp2 .jpx JPEG 2000 X

.pcx PC
Paintbrush
Bitmap
Graphic

X

http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm

Images

59

Extension Description Windows
XP

Mac OS X Linux 9

.png Portable
Network
Graphic

X X X

.pnm PBM
Portable Any
Map Graphic
Bitmap

X

.ras Sun raster
graphic

X

.tga Truevision
Targa
Graphic

X

.tif .tiff Tagged
Image File
Format

X X X

.xbm X11 bitmap X X

.xpm X11 icon X X
9Requires GTK 2.0 or later.
10Only S3TC compressed surfaces are supported. Depth, volume and cube textures are not supported.

The only supported save format is PNG, unless PIL is installed, in which case any format it supports can
be written.

Working with images
The pyglet.image.load function returns an AbstractImage. The actual class of the object depends on the
decoder that was used, but all images support the following attributes:

width The width of the image, in pixels.

height The height of the image, in pixels.

anchor_x Distance of the anchor point from the left edge of the image, in pixels

anchor_y Distance of the anchor point from the bottom edge of the image, in pixels

The anchor point defaults to (0, 0), though some image formats may contain an intrinsic anchor point. The
anchor point is used to align the image to a point in space when drawing it.

You may only want to use a portion of the complete image. You can use the get_region method to return
an image of a rectangular region of a source image:

image_part = kitten.get_region(x=10, y=10, width=100, height=100)

This returns an image with dimensions 100x100. The region extracted from kitten is aligned such that the
bottom-left corner of the rectangle is 10 pixels from the left and 10 pixels from the bottom of the image.

Image regions can be used as if they were complete images. Note that changes to an image region may or
may not be reflected on the source image, and changes to the source image may or may not be reflected
on any region images. You should not assume either behaviour.

Images

60

The AbstractImage hierarchy
The following sections deal with the various concrete image classes. All images subclass AbstractImage,
which provides the basic interface described in previous sections.

The AbstractImage class hierarchy.

An image of any class can be converted into a Texture or ImageData using the get_texture and
get_image_data methods defined on AbstractImage. For example, to load an image and work with it as
an OpenGL texture:

kitten = pyglet.image.load('kitten.png').get_texture()

There is no penalty for accessing one of these methods if object is already of the requested class. The
following table shows how concrete classes are converted into other classes:

Original class .get_texture() .get_image_data()

Texture No change glGetTexImage2D

TextureRegion No change glGetTexImage2D,
crop resulting
image.

ImageData glTexImage2D 1 No change

ImageDataRegion glTexImage2D 1 No change

CompressedImageData glCompressedTexImage2D
2

N/A 3

BufferImage glCopyTexSubImage2D
4

glReadPixels

1ImageData caches the texture for future use, so there is no performance penalty for repeatedly blitting an
ImageData.
2If the required texture compression extension is not present, the image is decompressed in memory and then
supplied to OpenGL via glTexImage2D.
3It is not currently possible to retrieve ImageData for compressed texture images. This
feature may be implemented in a future release of pyglet. One workaround is to create
a texture from the compressed image, then read the image data from the texture; i.e.,
compressed_image.get_texture().get_image_data().
4BufferImageMask cannot be converted to Texture.

You should try to avoid conversions which use glGetTexImage2D or glReadPixels, as these can
impose a substantial performance penalty by transferring data in the "wrong" direction of the video bus,
especially on older hardware.

Images

61

Accessing or providing pixel data
The ImageData class represents an image as a string or sequence of pixel data, or as a ctypes pointer.
Details such as the pitch and component layout are also stored in the class. You can access an ImageData
object for any image with get_image_data:

kitten = pyglet.image.load('kitten.png').get_image_data()

The design of ImageData is to allow applications to access the detail in the format they prefer, rather than
having to understand the many formats that each operating system and OpenGL make use of.

The pitch and format properties determine how the bytes are arranged. pitch gives the number of bytes
between each consecutive row. The data is assumed to run from left-to-right, bottom-to-top, unless pitch
is negative, in which case it runs from left-to-right, top-to-bottom. There is no need for rows to be tightly
packed; larger pitch values are often used to align each row to machine word boundaries.

The format property gives the number and order of color components. It is a string of one or more of the
letters corresponding to the components in the following table:

R Red

G Green

B Blue

A Alpha

L Luminance

I Intensity

For example, a format string of "RGBA" corresponds to four bytes of colour data, in the order red, green,
blue, alpha. Note that machine endianness has no impact on the interpretation of a format string.

The length of a format string always gives the number of bytes per pixel. So, the minimum absolute pitch
for a given image is len(kitten.format) * kitten.width.

To retrieve pixel data in a particular format, use the get_data method, specifying the desired format and
pitch. The following example reads tightly packed rows in RGB format (the alpha component, if any, will
be discarded):

kitten = kitten.get_image_data()
data = kitten.get_data('RGB', kitten.width * 3)

data always returns a string, however it can be set to a ctypes array, stdlib array, list of byte data, string,
or ctypes pointer. To set the image data use set_data, again specifying the format and pitch:

kitten.set_data('RGB', kitten.width * 3, data)

You can also create ImageData directly, by providing each of these attributes to the constructor. This is
any easy way to load textures into OpenGL from other programs or libraries.

Performance concerns
pyglet can use several methods to transform pixel data from one format to another. It will always try
to select the most efficient means. For example, when providing texture data to OpenGL, the following
possibilities are examined in order:

Images

62

1. Can the data be provided directly using a built-in OpenGL pixel format such as GL_RGB or GL_RGBA?

2. Is there an extension present that handles this pixel format?

3. Can the data be transformed with a single regular expression?

4. If none of the above are possible, the image will be split into separate scanlines and a regular expression
replacement done on each; then the lines will be joined together again.

The following table shows which image formats can be used directly with steps 1 and 2 above, as long as
the image rows are tightly packed (that is, the pitch is equal to the width times the number of components).

Format Required extensions

"I"

"L"

"LA"

"R"

"G"

"B"

"A"

"RGB"

"RGBA"

"ARGB" GL_EXT_bgra and
GL_APPLE_packed_pixels

"ABGR" GL_EXT_abgr

"BGR" GL_EXT_bgra

"BGRA" GL_EXT_bgra

If the image data is not in one of these formats, a regular expression will be constructed to pull it into
one. If the rows are not tightly packed, or if the image is ordered from top-to-bottom, the rows will be
split before the regular expression is applied. Each of these may incur a performance penalty -- you should
avoid such formats for real-time texture updates if possible.

Image sequences and atlases
Sometimes a single image is used to hold several images. For example, a "sprite sheet" is an image that
contains each animation frame required for a character sprite animation.

pyglet provides convenience classes for extracting the individual images from such a composite image as
if it were a simple Python sequence. Discrete images can also be packed into one or more larger textures
with texture bins and atlases.

Images

63

The AbstractImageSequence class hierarchy.

Image grids

An "image grid" is a single image which is divided into several smaller images by drawing an imaginary
grid over it. The following image shows an image used for the explosion animation in the Astraea example.

An image consisting of eight animation frames arranged in a grid.

This image has one row and eight columns. This is all the information you need to create an ImageGrid
with:

explosion = pyglet.image.load('explosion.png')
explosion_seq = pyglet.image.ImageGrid(explosion, 1, 8)

The images within the grid can now be accessed as if they were their own images:

frame_1 = explosion_seq[0]
frame_2 = explosion_seq[1]

Images with more than one row can be accessed either as a single-dimensional sequence, or as a (row,
column) tuple; as shown in the following diagram.

Images

64

An image grid with several rows and columns, and the slices that can be used to access it.

Image sequences can be sliced like any other sequence in Python. For example, the following obtains the
first four frames in the animation:

start_frames = explosion_seq[:4]

For efficient rendering, you should use a TextureGrid. This uses a single texture for the grid, and each
individual image returned from a slice will be a TextureRegion:

explosion_tex_seq = image.TextureGrid(explosion_seq)

Because TextureGrid is also a Texture, you can use it either as individual images or as the whole grid
at once.

3D textures
TextureGrid is extremely efficient for drawing many sprites from a single texture. One problem you may
encounter, however, is bleeding between adjacent images.

When OpenGL renders a texture to the screen, by default it obtains each pixel colour by interpolating
nearby texels. You can disable this behaviour by switching to the GL_NEAREST interpolation mode,
however you then lose the benefits of smooth scaling, distortion, rotation and sub-pixel positioning.

You can alleviate the problem by always leaving a 1-pixel clear border around each image frame. This will
not solve the problem if you are using mipmapping, however. At this stage you will need a 3D texture.

You can create a 3D texture from any sequence of images, or from an ImageGrid. The images must all
be of the same dimension, however they need not be powers of two (pyglet takes care of this by returning
TextureRegion as with a regular Texture).

In the following example, the explosion texture from above is uploaded into a 3D texture:

explosion_3d = pyglet.image.Texture3D.create_for_image_grid(explosion_seq)

You could also have stored each image as a separate file and used Texture3D.create_for_images to create
the 3D texture.

Images

65

Once created, a 3D texture behaves like any other ImageSequence; slices return TextureRegion for an
image plane within the texture. Unlike a TextureGrid, though, you cannot blit a Texture3D in its entirety.

Texture bins and atlases
Image grids are useful when the artist has good tools to construct the larger images of the appropriate
format, and the contained images all have the same size. However it is often simpler to keep individual
images as separate files on disk, and only combine them into larger textures at runtime for efficiency.

A TextureAtlas is initially an empty texture, but images of any size can be added to it at any time. The atlas
takes care of tracking the "free" areas within the texture, and of placing images at appropriate locations
within the texture to avoid overlap.

It's possible for a TextureAtlas to run out of space for new images, so applications will need to either know
the correct size of the texture to allocate initally, or maintain multiple atlases as each one fills up.

The TextureBin class provides a simple means to manage multiple atlases. The following example loads
a list of images, then inserts those images into a texture bin. The resulting list is a list of TextureRegion
images that map into the larger shared texture atlases:

images = [
 pyglet.image.load('img1.png'),
 pyglet.image.load('img2.png'),
 # ...
]

bin = pyglet.image.atlas.TextureBin()
images = [bin.add(image) for image in images]

The pyglet.resource module (see Application resources) uses texture bins internally to efficiently pack
images automatically.

Animations
While image sequences and atlases provide storage for related images, they alone are not enough to
describe a complete animation.

The Animation class manages a list of AnimationFrame objects, each of which references an image and
a duration, in seconds. The storage of the images is up to the application developer: they can each be
discrete, or packed into a texture atlas, or any other technique.

An animation can loaded directly from a GIF 89a image file with load_animation (supported on Linux,
Mac OS X and Windows) or constructed manually from a list of images or an image sequence using the
class methods (in which case the timing information will also need to be provided). The add_to_texture_bin
method provides a convenient way to pack the image frames into a texture bin for efficient access.

Individual frames can be accessed by the application for use with any kind of rendering, or the entire
animation can be used directly with a Sprite (see next section).

The following example loads a GIF animation and packs the images in that animation into a texture bin.
A sprite is used to display the animation in the window:

animation = pyglet.image.load_animation('animation.gif')
bin = pyglet.image.TextureBin()
animation.add_to_texture_bin(bin)

Images

66

sprite = pyglet.sprite.Sprite(animation)

window = pyglet.window.Window()

@window.event
def on_draw():
 sprite.draw()

pyglet.app.run()

When animations are loaded with pyglet.resource (see Application resources) the frames are automatically
packed into a texture bin.

This example program is located in examples/programming_guide/animation.py, along with a sample GIF
animation file.

Buffer images
pyglet provides a basic representation of the framebuffer as components of the AbstractImage hierarchy.
At this stage this representation is based off OpenGL 1.1, and there is no support for newer features such
as framebuffer objects. Of course, this doesn't prevent you using framebuffer objects in your programs
-- pyglet.gl provides this functionality -- just that they are not represented as AbstractImage types.

The BufferImage hierarchy.

A framebuffer consists of

• One or more colour buffers, represented by ColorBufferImage

• An optional depth buffer, represented by DepthBufferImage

• An optional stencil buffer, with each bit represented by BufferImageMask

• Any number of auxilliary buffers, also represented by ColorBufferImage

You cannot create the buffer images directly; instead you must obtain instances via the BufferManager.
Use get_buffer_manager to get this singleton:

buffers = image.get_buffer_manager()

Only the back-left color buffer can be obtained (i.e., the front buffer is inaccessible, and stereo contexts
are not supported by the buffer manager):

color_buffer = buffers.get_color_buffer()

Images

67

This buffer can be treated like any other image. For example, you could copy it to a texture, obtain its
pixel data, save it to a file, and so on. Using the texture attribute is particularly useful, as it allows you to
perform multipass rendering effects without needing a render-to-texture extension.

The depth buffer can be obtained similarly:

depth_buffer = buffers.get_depth_buffer()

When a depth buffer is converted to a texture, the class used will be a DepthTexture, suitable for use with
shadow map techniques.

The auxilliary buffers and stencil bits are obtained by requesting one, which will then be marked as "in-
use". This permits multiple libraries and your application to work together without clashes in stencil bits
or auxilliary buffer names. For example, to obtain a free stencil bit:

mask = buffers.get_buffer_mask()

The buffer manager maintains a weak reference to the buffer mask, so that when you release all references
to it, it will be returned to the pool of available masks.

Similarly, a free auxilliary buffer is obtained:

aux_buffer = buffers.get_aux_buffer()

When using the stencil or auxilliary buffers, make sure you explicitly request these when creating the
window. See OpenGL configuration options for details.

Displaying images
Images should be drawn into a window in the window's on_draw event handler. Usually a "sprite" should
be created for each appearance of the image on-screen. Images can also be drawn directly without creating
a sprite.

Sprites
A sprite is an instance of an image displayed in the window. Multiple sprites can share the same image;
for example, hundreds of bullet sprites might share the same bullet image.

A sprite is constructed given an image or animation, and drawn with the Sprite.draw method:

sprite = pyglet.sprite.Sprite(image)

@window.event
def on_draw():
 window.clear()
 sprite.draw()

Sprites have properties for setting the position, rotation, scale, opacity, color tint and visibility of the
displayed image. Sprites automatically handle displaying the most up-to-date frame of an animation. The
following example uses a scheduled function to gradually move the sprite across the screen:

def update(dt):
 # Move 10 pixels per second
 sprite.x += dt * 10

Call update 60 times a second

Images

68

pyglet.clock.schedule_interval(update, 1/60.)

If you need to draw many sprites, use a Batch to draw them all at once. This is far more efficient than
calling draw on each of them in a loop:

batch = pyglet.graphics.Batch()

sprites = [pyglet.sprite.Sprite(image, batch=batch),
 pyglet.sprite.Sprite(image, batch=batch),
 # ...]

@window.event
def on_draw():
 window.clear()
 batch.draw()

When sprites are collected into a batch, no guarantee is made about the order in which they will be drawn.
If you need to ensure some sprites are drawn before others (for example, landscape tiles might be drawn
before character sprites, which might be drawn before some particle effect sprites), use two or more
OrderedGroup objects to specify the draw order:

batch = pyglet.graphics.Batch()
background = pyglet.graphics.OrderedGroup(0)
foreground = pyglet.graphics.OrderedGroup(1)

sprites = [pyglet.sprite.Sprite(image, batch=batch, group=background),
 pyglet.sprite.Sprite(image, batch=batch, group=background),
 pyglet.sprite.Sprite(image, batch=batch, group=foreground),
 pyglet.sprite.Sprite(image, batch=batch, group=foreground),
 # ...]

@window.event
def on_draw():
 window.clear()
 batch.draw()

See the Graphics section for more details on batch and group rendering.

For best performance, try to collect all batch images into as few textures as possible; for example, by
loading images with pyglet.resource.image (see Application resources) or with Texture bins and atlases).

Simple image blitting
A simple but less efficient way to draw an image directly into a window is with the blit method:

@window.event
def on_draw():
 window.clear()
 image.blit(x, y)

The x and y coordinates locate where to draw the anchor point of the image. For example, to center the
image at (x, y):

kitten.anchor_x = kitten.width // 2
kitten.anchor_y = kitten.height // 2

Images

69

kitten.blit(x, y)

You can also specify an optional z component to the blit method. This has no effect unless you have
changed the default projection or enabled depth testing. In the following example, the second image is
drawn behind the first, even though it is drawn after it:

from pyglet.gl import *
glEnable(GL_DEPTH_TEST)

kitten.blit(x, y, 0)
kitten.blit(x, y, -0.5)

The default pyglet projection has a depth range of (-1, 1) -- images drawn with a z value outside this range
will not be visible, regardless of whether depth testing is enabled or not.

Images with an alpha channel can be blended with the existing framebuffer. To do this you need to supply
OpenGL with a blend equation. The following code fragment implements the most common form of alpha
blending, however other techniques are also possible:

from pyglet.gl import *
glEnable(GL_BLEND)
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

You would only need to call the code above once during your program, before you draw any images (this
is not necessary when using only sprites).

OpenGL imaging
This section assumes you are familiar with texture mapping in OpenGL (for example, chapter 9 of the
OpenGL Programming Guide [http://opengl.org/documentation/red_book/]).

To create a texture from any AbstractImage, call get_texture:

kitten = image.load('kitten.jpg')
texture = kitten.get_texture()

Textures are automatically created and used by ImageData when blitted. It is useful to use textures directly
when aiming for high performance or 3D applications.

The Texture class represents any texture object. The target attribute gives the texture target (for example,
GL_TEXTURE_2D) and id the texture name. For example, to bind a texture:

glBindTexture(texture.target, texture.id)

Texture dimensions
Implementations of OpenGL prior to 2.0 require textures to have dimensions that are powers of two (i.e., 1,
2, 4, 8, 16, ...). Because of this restriction, pyglet will always create textures of these dimensions (there are
several non-conformant post-2.0 implementations). This could have unexpected results for a user blitting
a texture loaded from a file of non-standard dimensions. To remedy this, pyglet returns a TextureRegion
of the larger texture corresponding to just the part of the texture covered by the original image.

A TextureRegion has an owner attribute that references the larger texture. The following session
demonstrates this:

>>> rgba = image.load('tests/image/rgba.png')

http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

Images

70

>>> rgba
<ImageData 235x257> # The image is 235x257
>>> rgba.get_texture()
<TextureRegion 235x257> # The returned texture is a region
>>> rgba.get_texture().owner
<Texture 256x512> # The owning texture has power-2 dimensions
>>>

A TextureRegion defines a tex_coords attribute that gives the texture coordinates to use for a quad mapping
the whole image. tex_coords is a 4-tuple of 3-tuple of floats; i.e., each texture coordinate is given in 3
dimensions. The following code can be used to render a quad for a texture region:

texture = kitten.get_texture()
t = texture.tex_coords
w, h = texture.width, texture.height
array = (GLfloat * 32)(
 t[0][0], t[0][1], t[0][2], 1.,
 x, y, z, 1.,
 t[1][0], t[1][1], t[1][2], 1.,
 x + w, y, z, 1.,
 t[2][0], t[2][1], t[2][2], 1.,
 x + w, y + h, z, 1.,
 t[3][0], t[3][1], t[3][2], 1.,
 x, y + h, z, 1.)

glPushClientAttrib(GL_CLIENT_VERTEX_ARRAY_BIT)
glInterleavedArrays(GL_T4F_V4F, 0, array)
glDrawArrays(GL_QUADS, 0, 4)
glPopClientAttrib()

The Texture.blit method does this.

Use the Texture.create method to create either a texture region from a larger power-2 sized texture,
or a texture with the exact dimensions using the GL_texture_rectangle_ARB extension.

Texture internal format
pyglet automatically selects an internal format for the texture based on the source image's format attribute.
The following table describes how it is selected.

Format Internal format

Any format with 3 components GL_RGB

Any format with 2 components GL_LUMINANCE_ALPHA

"A" GL_ALPHA

"L" GL_LUMINANCE

"I" GL_INTENSITY

Any other format GL_RGBA

Note that this table does not imply any mapping between format components and their OpenGL
counterparts. For example, an image with format "RG" will use GL_LUMINANCE_ALPHA as its internal
format; the luminance channel will be averaged from the red and green components, and the alpha channel
will be empty (maximal).

Images

71

Use the Texture.create class method to create a texture with a specific internal format.

Saving an image
Any image can be saved using the save method:

kitten.save('kitten.png')

or, specifying a file-like object:

kitten_stream = open('kitten.png', 'wb')
kitten.save('kitten.png', file=kitten_stream)

The following example shows how to grab a screenshot of your application window:

pyglet.image.get_buffer_manager().get_color_buffer().save('screenshot.png')

Note that images can only be saved in the PNG format unless PIL is installed.

72

Sound and video
pyglet can play many audio and video formats. Audio is played back with either OpenAL, DirectSound
or ALSA, permitting hardware-accelerated mixing and surround-sound 3D positioning. Video is played
into OpenGL textures, and so can be easily be manipulated in real-time by applications and incorporated
into 3D environments.

Decoding of compressed audio and video is provided by AVbin [http://code.google.com/p/avbin], an
optional component available for Linux, Windows and Mac OS X. AVbin is installed alongside pyglet
by default if the Windows or Mac OS X installation is used. If pyglet was installed from source, AVbin
can be installed separately.

If AVbin is not present, pyglet will fall back to reading uncompressed WAV files only. This may be
sufficient for many applications that require only a small number of short sounds, in which case those
applications need not distribute AVbin.

Audio drivers
pyglet can use OpenAL, DirectSound or ALSA to play back audio. Only one of these drivers can be used
in an application, and this must be selected before the pyglet.media module is loaded. The available drivers
depend on your operating system:

Windows Mac OS X Linux

OpenAL 11 OpenAL OpenAL 11

DirectSound

ALSA
11OpenAL is not installed by default on Windows, nor in many Linux distributions. It can be downloaded
separately from your audio device manufacturer or openal.org [http://www.openal.org/downloads.html]

The audio driver can be set through the audio key of the pyglet.options dictionary. For example:

pyglet.options['audio'] = ('openal', 'silent')

This tells pyglet to use the OpenAL driver if it is available, and to ignore all audio output if it is not. The
audio option can be a list of any of these strings, giving the preference order for each driver:

String Audio driver

openal OpenAL

directsound DirectSound

alsa ALSA

silent No audio output

You must set the audio option before importing pyglet.media. You can alternatively set it through an
environment variable; see Environment settings.

The following sections describe the requirements and limitations of each audio driver.

DirectSound
DirectSound is available only on Windows, and is installed by default on Windows XP and later. pyglet
uses only DirectX 7 features. On Windows Vista DirectSound does not support hardware audio mixing
or surround sound.

http://code.google.com/p/avbin
http://code.google.com/p/avbin
http://www.openal.org/downloads.html
http://www.openal.org/downloads.html

Sound and video

73

OpenAL
OpenAL is included with Mac OS X. Windows users can download a generic driver from openal.org [http:/
/www.openal.org/downloads.html], or from their sound device's manufacturer. Linux users can use the
reference implementation also provided by Creative. For example, Ubuntu users can apt-get openal.
ALUT is not required. pyglet makes use of OpenAL 1.1 features if available, but will also work with
OpenAL 1.0.

Due to a long-standing bug in the reference implementation of OpenAL, stereo audio is downmixed to
mono on Linux. This does not affect Windows or Mac OS X users.

ALSA
ALSA is the standard Linux audio implementation, and is installed by default with many distributions.
Due to limitations in ALSA all audio sources will play back at full volume and without any surround
sound positioning.

Linux Issues
Linux users have the option of choosing between OpenAL and ALSA for audio output. Unfortunately
both implementations have severe limitations or implementation bugs that are outside the scope of pyglet's
control.

If your application can manage without stereo playback, or needs control over individual audio volumes,
you should use the OpenAL driver (assuming your users have it installed).

If your application needs stereo playback, or does not require spatialised sound, consider using the ALSA
driver in preference to the OpenAL driver. You can do this with:

pyglet.options['audio'] = ('alsa', 'openal', 'silent')

Supported media types
If AVbin is not installed, only uncompressed RIFF/WAV files encoded with linear PCM can be read.

With AVbin, many common and less-common formats are supported. Due to the large number of
combinations of audio and video codecs, options, and container formats, it is difficult to provide a complete
yet useful list. Some of the supported audio formats are:

• AU

• MP2

• MP3

• OGG/Vorbis

• WAV

• WMA

Some of the supported video formats are:

• AVI

• DivX

http://www.openal.org/downloads.html
http://www.openal.org/downloads.html
http://www.openal.org/downloads.html

Sound and video

74

• H.263

• H.264

• MPEG

• MPEG-2

• OGG/Theora

• Xvid

• WMV

For a complete list, see the AVbin sources. Otherwise, it is probably simpler to simply try playing back
your target file with the media_player.py example.

New versions of AVbin as they are released may support additional formats, or fix errors in the current
implementation. AVbin is completely future- and backward-compatible, so no change to pyglet is needed
to use a newer version of AVbin -- just install it in place of the old version.

Loading media
Audio and video files are loaded in the same way, using the pyglet.media.load function, providing a
filename:

source = pyglet.media.load('explosion.wav')

If the media file is bundled with the application, consider using the resource module (see Application
resources).

The result of loading a media file is a Source object. This object provides useful information about the
type of media encoded in the file, and serves as an opaque object used for playing back the file (described
in the next section).

The load function will raise a MediaException if the format is unknown. IOError may also be raised if the
file could not be read from disk. Future versions of pyglet will also support reading from arbitrary file-like
objects, however a valid filename must currently be given.

The length of the media file is given by the duration property, which returns the media's length in seconds.

Audio metadata is provided in the source's audio_format attribute, which is None for silent videos. This
metadata is not generally useful to applications. See the AudioFormat class documentation for details.

Video metadata is provided in the source's video_format attribute, which is None for audio files. It is
recommended that this attribute is checked before attempting play back a video file -- if a movie file has
a readable audio track but unknown video format it will appear as an audio file.

You can use the video metadata, described in a VideoFormat object, to set up display of the video before
beginning playback. The attributes are as follows:

Attribute Description

width, height Width and height of the
video image, in pixels.

sample_aspect The aspect ratio of each
video pixel.

Sound and video

75

You must take care to apply the sample aspect ratio to the video image size for display purposes. The
following code determines the display size for a given video format:

def get_video_size(width, height, sample_aspect):
 if sample_aspect > 1.:
 return width * sample_aspect, height
 elif sample_aspect < 1.:
 return width, height / sample_aspect
 else:
 return width, height

Media files are not normally read entirely from disk; instead, they are streamed into the decoder, and then
into the audio buffers and video memory only when needed. This reduces the startup time of loading a file
and reduces the memory requirements of the application.

However, there are times when it is desirable to completely decode an audio file in memory first. For
example, a sound that will be played many times (such as a bullet or explosion) should only be decoded
once. You can instruct pyglet to completely decode an audio file into memory at load time:

explosion = pyglet.media.load('explosion.wav', streaming=False)

The resulting source is an instance of StaticSource, which provides the same interface as a streaming
source. You can also construct a StaticSource directly from an already-loaded Source:

explosion = pyglet.media.StaticSource(pyglet.media.load('explosion.wav'))

Simple audio playback
Many applications, especially games, need to play sounds in their entirety without needing to keep track
of them. For example, a sound needs to be played when the player's space ship explodes, but this sound
never needs to have its volume adjusted, or be rewound, or interrupted.

pyglet provides a simple interface for this kind of use-case. Call the play method of any Source to play
it immediately and completely:

explosion = pyglet.media.load('explosion.wav', streaming=False)
explosion.play()

You can call play on any Source, not just StaticSource.

The return value of Source.play is a ManagedPlayer, which can either be discarded, or retained to maintain
control over the sound's playback.

Controlling playback
You can implement many functions common to a media player using the Player class. Use of this class is
also necessary for video playback. There are no parameters to its construction:

player = pyglet.media.Player()

A player will play any source that is "queued" on it. Any number of sources can be queued on a single
player, but once queued, a source can never be dequeued (until it is removed automatically once complete).
The main use of this queuing mechanism is to facilitate "gapless" transitions between playback of media
files.

Sound and video

76

A StreamingSource can only ever be queued on one player, and only once on that player. StaticSource
objects can be queued any number of times on any number of players. Recall that a StaticSource can be
created by passing streaming=False to the load method.

In the following example, two sounds are queued onto a player:

player.queue(source1)
player.queue(source2)

Playback begins with the player's play method is called:

player.play()

Standard controls for controlling playback are provided by these methods:

Method Description

play Begin or resume playback
of the current source.

pause Pause playback of the
current source.

next Dequeue the current source
and move to the next one
immediately.

seek Seek to a specific time
within the current source.

Note that there is no stop method. If you do not need to resume playback, simply pause playback and
discard the player and source objects. Using the next method does not guarantee gapless playback.

There are several properties that describe the player's current state:

Property Description

time The current playback
position within the current
source, in seconds. This is
read-only (but see the seek
method).

playing True if the player is
currently playing, False if
there are no sources queued
or the player is paused. This
is read-only (but see the
pause and play methods).

source A reference to the current
source being played. This is
read-only (but see the queue
method).

volume The audio level, expressed
as a float from 0 (mute) to
1 (normal volume). This can
be set at any time.

Sound and video

77

When a player reaches the end of the current source, by default it will move immediately to the next
queued source. If there are no more sources, playback stops until another is queued. There are several other
possible behaviours, specified by setting the eos_action attribute on the player:

eos_action Description

EOS_NEXT The default action: playback
continues at the next source.

EOS_PAUSE Playback pauses at the end
of the source, which remains
the current source for this
player.

EOS_LOOP Playback continues
immediately at the
beginning of the current
source.

EOS_STOP Valid only for
ManagedPlayer, for which
it is default: the player is
discarded when the current
source finishes.

You can change a player's eos_action at any time, but be aware that unless sufficient time is given for the
future data to be decoded and buffered there may be a stutter or gap in playback. If eos_action is set well
in advance of the end of the source (say, several seconds), there will be no disruption.

Incorporating video
When a Player is playing back a source with video, use the get_texture method to obtain the video frame
image. This can be used to display the current video image syncronised with the audio track, for example:

@window.event
def on_draw():
 player.get_texture().blit(0, 0)

The texture is an instance of pyglet.image.Texture, with an internal format of either GL_TEXTURE_2D
or GL_TEXTURE_RECTANGLE_ARB. While the texture will typically be created only once and
subsequentally updated each frame, you should make no such assumption in your application -- future
versions of pyglet may use multiple texture objects.

Positional audio
pyglet uses OpenAL for audio playback, which includes many features for positioning sound within a 3D
space. This is particularly effective with a surround-sound setup, but is also applicable to stereo systems.

A Player in pyglet has an associated position in 3D space -- that is, it is equivalent to an OpenAL "source".
The properties for setting these parameters are described in more detail in the API documentation; see for
example Player.position and Player.pitch.

The OpenAL "listener" object is provided by the pyglet.media.listener singleton, an instance of
Listener. This provides similar properties such as Listener.position, Listener.forward_orientation and
Listener.up_orientation that describe the position of the user in 3D space.

Sound and video

78

Note that only mono sounds can be positioned. Stereo sounds will play back as normal, and only their
volume and pitch properties will affect the sound.

79

Application resources
Previous sections in this guide have described how to load images, media and text documents using pyglet.
Applications also usually have the need to load other data files: for example, level descriptions in a game,
internationalised strings, and so on.

Programmers are often tempted to load, for example, an image required by their application with:

image = pyglet.image.load('logo.png')

This code assumes logo.png is in the current working directory. Unfortunately the working directory
is not necessarily the same as the directory containing the application script files.

• Applications started from the command line can start from an arbitrary working directory.

• Applications bundled into an egg, Mac OS X package or Windows executable may have their resources
inside a ZIP file.

• The application might need to change the working directory in order to work with the user's files.

A common workaround for this is to construct a path relative to the script file instead of the working
directory:

import os

script_dir = os.path.dirname(__file__)
path = os.path.join(script_dir, 'logo.png')
image = pyglet.image.load(path)

This, besides being tedious to write, still does not work for resources within ZIP files, and can be
troublesome in projects that span multiple packages.

The pyglet.resource module solves this problem elegantly:

image = pyglet.resource.image('logo.png')

The following sections describe exactly how the resources are located, and how the behaviour can be
customised.

Loading resources
Use the pyglet.resource module when files shipped with the application need to be loaded. For example,
instead of writing:

data_file = open('file.txt')

use:

data_file = pyglet.resource.file('file.txt')

There are also convenience functions for loading media files for pyglet. The following table shows the
equivalent resource functions for the standard file functions.

File function Resource function Type

open pyglet.resource.file File-like object

Application resources

80

File function Resource function Type

pyglet.image.load pyglet.resource.imageTexture or
TextureRegion

pyglet.image.load pyglet.resource.textureTexture

pyglet.image.load_animation pyglet.resource.animationAnimation

pyglet.media.load pyglet.resource.mediaSource

pyglet.text.loadmimetype = text/plain
pyglet.resource.text UnformattedDocument

pyglet.text.loadmimetype = text/html
pyglet.resource.html FormattedDocument

pyglet.text.loadmimetype = text/vnd.pyglet-attributed
pyglet.resource.attributedFormattedDocument

pyglet.font.add_file pyglet.resource.add_fontNone

pyglet.resource.texture is for loading stand-alone textures, and would be required when using the texture
for a 3D model.

pyglet.resource.image is optimised for loading sprite-like images that can have their texture coordinates
adjusted. The resource module attempts to pack small images into larger textures for efficient rendering
(which is why the return type of this function can be TextureRegion).

Resource locations
Some resource files reference other files by name. For example, an HTML document can contain elements. In this case your application needs to locate image.png relative
to the original HTML file.

Use pyglet.resource.location to get a Location object describing the location of an application resource.
This location might be a file system directory or a directory within a ZIP file. The Location object can
directly open files by name, so your application does not need to distinguish between these cases.

In the following example, a thumbnails.txt file is assumed to contain a list of image filenames
(one per line), which are then loaded assuming the image files are located in the same directory as the
thumbnails.txt file:

thumbnails_file = pyglet.resource.file('thumbnails.txt', 'rt')
thumbnails_location = pyglet.resource.location('thumbnails.txt')

for line in thumbnails_file:
 filename = line.strip()
 image_file = thumbnails_location.open(filename)
 image = pyglet.image.load(filename, file=image_file)
 # Do something with `image`...

This code correctly ignores other images with the same filename that might appear elsewhere on the
resource path.

Specifying the resource path
By default, only the script home directory is searched (the directory containing the __main__ module).
You can set pyglet.resource.path to a list of locations to search in order. This list is indexed, so after
modifying it you will need to call pyglet.resource.reindex.

Application resources

81

Each item in the path list is either a path relative to the script home, or the name of a Python module
preceded with an ampersand (@). For example, if you would like to package all your resources in a res
directory:

pyglet.resource.path = ['res']
pyglet.resource.reindex()

Items on the path are not searched recursively, so if your resource directory itself has subdirectories, these
need to be specified explicitly:

pyglet.resource.path = ['res', 'res/images', 'res/sounds', 'res/fonts']
pyglet.resource.reindex()

Specifying module names makes it easy to group code with its resources. The following example uses the
directory containing the hypothetical gui.skins.default for resources:

pyglet.resource.path = ['@gui.skins.default', '.']
pyglet.resource.reindex()

Multiple loaders
A Loader encapsulates a complete resource path and cache. This lets your application cleanly separate
resource loading of different modules. Loaders are constructed for a given search path, and exposes the
same methods as the global pyglet.resource module functions.

For example, if a module needs to load its own graphics but does not want to interfere with the rest of the
application's resource loading, it would create its own Loader with a local search path:

loader = pyglet.resource.Loader(['@' + __name__])
image = loader.image('logo.png')

This is particularly suitable for "plugin" modules.

You can also use a Loader instance to load a set of resources relative to some user-specified document
directory. The following example creates a loader for a directory specified on the command line:

import sys
home = sys.argv[1]
loader = pyglet.resource.Loader(script_home=[home])

This is the only way that absolute directories and resources not bundled with an application should be
used with pyglet.resource.

Saving user preferences
Because Python applications can be distributed in several ways, including within ZIP files, it is usually
not feasible to save user preferences, high score lists, and so on within the application directory (or worse,
the working directory).

The pyglet.resource.get_settings_path function returns a directory suitable for writing arbitrary user-
centric data. The directory used follows the operating system's convention:

• ~/.ApplicationName/ on Linux

• $HOME\Application Settings\ApplicationName on Windows

Application resources

82

• ~/Library/Application Support/ApplicationName on Mac OS X

The returned directory name is not guaranteed to exist -- it is the application's responsibility to create it. The
following example opens a high score list file for a game called "SuperGame" into the settings directory:

import os

dir = pyglet.resource.get_settings_path('SuperGame')
if not os.path.exists(dir):
 os.makedirs(dir)
filename = os.path.join(dir, 'highscores.txt')
file = open(filename, 'wt')

83

Debugging tools
pyglet includes a number of debug paths that can be enabled during or before application startup. These
were primarily developed to aid in debugging pyglet itself, however some of them may also prove useful
for understanding and debugging pyglet applications.

Each debug option is a key in the pyglet.options dictionary. Options can be set directly on the dictionary
before any other modules are imported:

import pyglet
pyglet.options['debug_gl'] = False

They can also be set with environment variables before pyglet is imported. The corresponding environment
variable for each option is the string PYGLET_ prefixed to the uppercase option key. For example, the
environment variable for debug_gl is PYGLET_DEBUG_GL. Boolean options are set or unset with 1
and 0 values.

A summary of the debug environment variables appears in the table below.

Option Environment
variable

Type

debug_font PYGLET_DEBUG_FONTbool

debug_gl PYGLET_DEBUG_GLbool

debug_gl_trace PYGLET_DEBUG_GL_TRACEbool

debug_gl_trace_args PYGLET_DEBUG_GL_TRACE_ARGSbool

debug_graphics_batch PYGLET_DEBUG_GRAPHICS_BATCHbool

debug_lib PYGLET_DEBUG_LIBbool

debug_media PYGLET_DEBUG_MEDIAbool

debug_trace PYGLET_DEBUG_TRACEbool

debug_trace_args PYGLET_DEBUG_TRACE_ARGSbool

debug_trace_depth PYGLET_DEBUG_TRACE_DEPTHint

debug_win32 PYGLET_DEBUG_WIN32bool

debug_x11 PYGLET_DEBUG_X11bool

graphics_vbo PYGLET_GRAPHICS_VBObool

The debug_media and debug_font options are used to debug the pyglet.media and
pyglet.font modules, respectively. Their behaviour is platform-dependent and useful only for pyglet
developers.

The remaining debug options are detailed below.

Debugging OpenGL
The graphics_vbo option enables the use of vertex buffer objects in pyglet.graphics (instead, only
vertex arrays). This is useful when debugging the graphics module as well as isolating code for
determining if a video driver is faulty.

Debugging tools

84

The debug_graphics_batch option causes all Batch objects to dump their rendering tree to standard
output before drawing, after any change (so two drawings of the same tree will only dump once). This is
useful to debug applications making use of Group and Batch rendering.

Error checking
The debug_gl option intercepts most OpenGL calls and calls glGetError afterwards (it only does
this where such a call would be legal). If an error is reported, an exception is raised immediately.

This option is enabled by default unless the -O flag (optimisation) is given to Python, or the script is
running from within a py2exe or py2app package.

Tracing
The debug_gl_trace option causes all OpenGL functions called to be dumped to standard out. When
combined with debug_gl_trace_args, the arguments given to each function are also printed (they
are abbreviated if necessary to avoid dumping large amounts of buffer data).

Tracing execution
The debug_trace option enables Python-wide function tracing. This causes every function call to be
printed to standard out. Due to the large number of function calls required just to initialise pyglet, it is
recommended to redirect standard output to a file when using this option.

The debug_trace_args option additionally prints the arguments to each function call.

When debug_trace_depth is greater than 1 the caller(s) of each function (and their arguments, if
debug_trace_args is set) are also printed. Each caller is indented beneath the callee. The default
depth is 1, specifying that no callers are printed.

Platform-specific debugging
The debug_lib option causes the path of each loaded library to be printed to standard out. This is
performed by the undocumented pyglet.lib module, which on Linux and Mac OS X must sometimes
follow complex procedures to find the correct library. On Windows not all libraries are loaded via this
module, so they will not be printed (however, loading Windows DLLs is sufficiently simple that there is
little need for this information).

Linux
X11 errors are caught by pyglet and suppressed, as there are plenty of X servers in the wild that generate
errors that can be safely ignored. The debug_x11 option causes these errors to be dumped to standard
out, along with a traceback of the Python stack (this may or may not correspond to the error, depending
on whether or not it was reported asynchronously).

Windows
The debug_win32 option causes all library calls into user32.dll, kernel32.dll and
gdi32.dll to be intercepted. Before each library call SetLastError(0) is called, and afterwards
GetLastError() is called. Any errors discovered are written to a file named debug_win32.log.
Note that an error is only valid if the function called returned an error code, but the interception function
does not check this.

85

Appendix: Migrating to pyglet 1.1
pyglet 1.1 introduces new features for rendering high performance graphics and text, is more convenient
to use, and integrates better with the operating system. Some of the existing interfaces have also been
redesigned slightly to conform with standard Python practice or to fix design flaws.

Compatibility and deprecation
pyglet 1.1 is backward compatible with pyglet 1.0. Any application that uses only public and documented
methods of pyglet 1.0 will continue to work unchanged in pyglet 1.1. If you encounter an issue where this
is not the case, please consider it a bug in pyglet and file an issue report.

Some methods have been marked deprecated in pyglet 1.1. These methods continue to work, but have been
superceded by newer methods that are either more efficient or have a better design. The API reference has
a complete list of deprecated methods; the main changes are described in the next section.

• Continue to use deprecated methods if your application needs to work with pyglet 1.0 as well as pyglet
1.1.

• New applications should not use deprecated methods.

Deprecated methods will continue to be supported in all minor revisions of pyglet 1.x. A pyglet 2.0 release
will no longer support these methods.

Deprecated methods
The following minor changes have been made for design or efficiency reasons. Applications which no
longer need to support pyglet 1.0 should make the appropriate changes to ensure the deprecated methods
are not called.

The dispatch_events method on Player and the equivalent function on the pyglet.media module
should no longer be called. In pyglet 1.1, media objects schedule an update function on pyglet.clock at an
appropriate interval. New applications using media are required to call pyglet.clock.tick periodically.

The AbstractImage properties texture, image_data, and so on have been replaced with equivalent
methods get_texture, get_image_data, etc.

The ImageData properties data, format and pitch, which together were used to extract pixel data from an
image, have been replaced with a single function get_data. The format and pitch properties should now
be used only to determine the current format and pitch of the image.

The get_current_context function has been replaced with a global variable, current_context, for efficiency.

New features replacing standard practice
pyglet 1.1 introduces new features that make it easier to program with, so the standard practice as followed
in many of the pyglet example programs has changed.

Importing pyglet
In pyglet 1.0, it was necessary to explicitly import each submodule required by the application; for
example:

Appendix: Migrating to pyglet 1.1

86

from pyglet import font
from pyglet import image
from pyglet import window

pyglet now lazily loads submodules on demand, so an application can get away with importing just pyglet.
This is especially handy for modules that are typically only used once in an application, and frees up the
names font, image, window and so on for the application developer. For example:

window = pyglet.window.Window()

Application event loop
Every application using pyglet 1.0 provides its own event loop, such as:

while not window.has_exit:
 dt = clock.tick()
 update(dt)

 window.dispatch_events()
 window.clear()
 draw()
 window.flip()

Besides being somewhat repetitious to type, this type of event loop is difficult to extend with more
windows, and exausts all available system resources, even if the application is not doing anything.

The new pyglet.app module provides an application event loop that is less demanding of the CPU yet more
responsive to user events. A complete application that opens an empty window can be written with:

window = pyglet.window.Window()

@window.event
def on_draw():
 window.clear()

pyglet.app.run()

Note the new on_draw event, which makes it easy to specify different drawing functions for each window.
The pyglet.app event loop takes care of dispatching events, ticking the clock, calling the draw function
and flipping the window buffer.

Update functions can be scheduled on the clock. To have an update function be called as often as possible,
use clock.schedule (this effectively degenerates into the older dispatch_events practice of thrashing the
CPU):

def update(dt):
 pass
clock.schedule(update)

Usually applications can update at a less frequent interval. For example, a game that is designed to run
at 60Hz can use clock.schedule_interval:

def update(dt):
 pass
clock.schedule_interval(update, 1/60.0)

Appendix: Migrating to pyglet 1.1

87

This also removes the need for clock.set_fps_limit.

Besides the advantages already listed, windows managed by the event loop will not block while being
resized or moved; and the menu bar on OS X can be interacted with without blocking the application.

It is highly recommended that all applications use the event loop. The loop can be extended if
you need to add additional hooks or integrate with another package. Applications continuing to use
Window.dispatch_events gain no advantage, but suffer from poorer response, increased CPU usage and
artifacts during window resizing and moving.

See The application event loop for more details.

Loading resources
Locating resources such as images, sound and video files, data files and fonts is difficult to do correctly
across all platforms, considering the effects of a changing working directory and various distribution
packages such as setuptools, py2exe and py2app.

The new pyglet.resource module implements the correct logic for all these cases, making it simple to load
resources that belong to a specific module or the application as a whole. A resource path can be set that is
indexed once, and can include filesystem directories, Python module paths and ZIP files.

For example, suppose your application ships with a logo.png that needs to be loaded on startup. In
pyglet 1.0 you might have written:

import os.path
from pyglet import image

script_dir = os.path.dirname(__file__)
logo_filename = os.path.join(script_dir, 'logo.png')
logo = image.load(logo_filename)

In pyglet 1.1, you can write:

logo = pyglet.resource.image('logo.png')

And will actually work in more scenarios (such as within a setuptools egg file, py2exe and py2app).

The resource module efficiently packs multiple small images into larger textures, so there is less need
for artists to create sprite sheets themselves for efficient rendering. Images and textures are also cached
automatically.

See Application resources for more details.

New graphics features
The pyglet.graphics module is a low-level abstraction of OpenGL vertex arrays and buffer objects. It
is intended for use by developers who are already very familiar with OpenGL and are after the best
performance possible. pyglet uses this module internally to implement its new sprite module and the new
text rendering module. The Graphics chapter describes this module in detail.

The pyglet.sprite module provide a fast, easy way to display 2D graphics on screen. Sprites can be moved,
rotated, scaled and made translucent. Using the batch features of the new graphics API, multiple sprites
can be drawn in one go very quickly. See Sprites for details.

Appendix: Migrating to pyglet 1.1

88

The pyglet.image.load_animation function can load animated GIF images. These are returned as an
Animation, which exposes the individual image frames and timings. Animations can also be played directly
on a sprite in place of an image. The Animations chapter describes how to use them.

The pyglet.image.atlas module packs multiple images into larger textures for efficient rendering. The
pyglet.resource module uses this module for small images automatically, but you can use it directly even
if you're not making use of pyglet.resource. See Texture bins and atlases for details.

Images now have anchor_x and anchor_y attributes, which specify a point from which the image
should be drawn. The sprite module also uses the anchor point as the center of rotation.

Textures have a get_transform method for retrieving a TextureRegion that refers to the same texture data
in video memory, but with optional horizontal or vertical flipping, or 90-degree rotation.

New text features
The pyglet.text module can render formatted text efficiently. A new class Label supercedes the old
pyglet.font.Text class (which is now actually implemented in terms of Label). The "Hello, World"
application can now written:

window = pyglet.window.Window()
label = pyglet.text.Label('Hello, world',
 font_name='Times New Roman',
 font_size=36,
 x=window.width//2, y=window.height//2,
 halign='center', valign='center')

@window.event
def on_draw():
 window.clear()
 label.draw()

pyglet.app.run()

You can also display multiple fonts and styles within one label, with HTMLLabel:

label = pyglet.text.HTMLLabel('Hello, world!')

More advanced uses of the new text module permit applications to efficiently display large, scrolling,
formatted documents (for example, HTML files with embedded images), and to allow the user to
interactively edit text as in a WYSIWYG text editor.

Other new features
EventDispatcher now has a remove_handlers method which provides finer control over the event stack
than pop_handlers.

The @event decorator has been fixed so that it no longer overrides existing event handlers on the object,
which fixes the common problem of handling the on_resize event. For example, the following now works
without any surprises (in pyglet 1.0 this would override the default handler, which sets up a default,
necessary viewport and projection):

@window.event
def on_resize(width, height):

Appendix: Migrating to pyglet 1.1

89

 pass

A variant of clock.schedule_interval, clock.schedule_interval_soft has been added. This is for functions
that need to be called periodically at a given interval, but do not need to schedule the period immediately.
Soft interval scheduling is used by the pyglet.media module to distribute the work of decoding video and
audio data over time, rather than stalling the CPU periodically. Games could use soft interval scheduling
to spread the regular computational requirements of multiple agents out over time.

In pyglet 1.0, font.load attempted to match the font resolution (DPI) with the operating system's typical
behaviour. For example, on Linux and Mac OS X the default DPI was typically set at 72, and on Windows
at 96. While this would be useful for writing a word processor, it adds a burden on the application developer
to ensure their fonts work at arbitrary resolutions. In pyglet 1.1 the default DPI is set at 96 across all
platforms. It can still be overridden explicitly by the application if desired.

Video sources in pyglet.media can now be stepped through frame-by-frame: individual image frames can
be extracted without needing to play back the video in realtime.

For a complete list of new features and bug fixes, see the CHANGELOG distributed with the source
distribution.

