
Traits User Manual

David C. Morrill
Janet M. Swisher

Document Version 4

© 2005, 2006, 2008 Enthought, Inc.

All Rights Reserved.

Redistribution and use of this document in source and derived forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source or derived format (for example, Portable Document Format or
Hypertext Markup Language) must retain the above copyright notice, this list of
conditions and the following disclaimer.

Neither the name of Enthought, Inc., nor the names of contributors may be used to
endorse or promote products derived from this document without specific prior written
permission.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

All trademarks and registered trademarks are the property of their respective owners.

Enthought, Inc.

515 Congress Avenue

Suite 2100

Austin TX 78701

1.512.536.1057 (voice)

1.512.536.1059 (fax)

http://www.enthought.com

info@enthought.com

mailto:info@enthought.com
http://www.enthought.com/

Table of Contents

1 Introduction ... 1
1.1 What Are Traits? ... 1
1.2 Background .. 3

2 Defining Traits: Initialization and Validation 5
2.1 Predefined Traits ... 6

2.1.1 Predefined Traits for Simple Types 7
2.1.1.1 Trait Type Coercion .. 7
2.1.1.2 Trait Type Casting .. 8

2.1.2 Other Predefined Traits ... 9
2.1.2.1 This and self ... 14
2.1.2.2 List of Possible Values .. 15

2.2 Trait Metadata ... 16
2.2.1 Internal Metadata Attributes .. 17
2.2.2 Recognized Metadata Attributes 18
2.2.3 Accessing Metadata Attributes .. 18

3 Trait Notification .. 21
3.1 Dynamic Notification .. 21

3.1.1 Example of a Dynamic Notification Handler 22
3.1.2 The name Parameter .. 23

3.1.2.1 Syntax ... 23
3.1.2.2 Semantics .. 24

3.1.3 Notification Handler Signatures 26
3.1.4 Dynamic Handler Special Cases 27

3.2 Static Notification ... 28
3.2.1 Handler Decorator ... 29

3.2.1.1 Decorator Syntax ... 29
3.2.1.2 Decorator Semantics ... 29

3.2.2 Specially-named Notification Handlers 30
3.2.3 Attribute-specific Handler Signatures 31
3.2.4 General Static Handler Signatures 32

3.3 Trait Events .. 33
3.4 Undefined Object ... 34

14-Aug-2008 i

Traits User Manual

4 Deferring Trait Definitions ... 35
4.1 DelegatesTo .. 35
4.2 PrototypedFrom .. 37
4.3 Keyword Parameters .. 37

4.3.1 Prefix Keyword .. 37
4.3.2 Listenable Keyword ... 39

4.4 Notification with Deferring ... 39

5 Custom Traits ... 41
5.1 Trait Subclassing ... 41

5.1.1 Defining a Trait Type .. 42
5.1.2 Defining a Trait Property .. 43
5.1.3 Other TraitType Members .. 43

5.2 The Trait() Factory Function .. 44
5.2.1 Trait () Parameters ... 45

5.2.1.1 Type ... 46
5.2.1.2 Constant Value .. 46

5.2.2 Mapped Traits .. 47
5.3 Trait Handlers ... 48

5.3.1 TraitPrefixList ... 49
5.3.2 TraitPrefixMap ... 50

5.4 Custom Trait Handlers ... 50
5.4.1 Example Custom Trait Handler 51

6 Advanced Topics ... 52
6.1 Initialization and Validation Revisited 52

6.1.1 Dynamic Initialization ... 52
6.1.2 Overriding Default Values in a Subclass 53
6.1.3 Reusing Trait Definitions .. 53
6.1.4 Trait Attribute Definition Strategies 54

6.1.4.1 Trait Attribute Name Wildcard 54
6.1.4.1.1 Wildcard Rules 55
6.1.4.1.2 Disallow Object 56
6.1.4.1.3 HasTraits Subclasses 57
6.1.4.1.4 HasStrictTraits 57
6.1.4.1.5 HasPrivateTraits 57

6.1.4.2 Per-Object Trait Attributes 58
6.1.5 Type-Checked Methods .. 59

6.2 Interfaces .. 60
6.2.1 Defining an Interface ... 61

ii 14-Aug-2008

Traits User Manual

6.2.2 Implementing an Interface .. 61
6.2.3 Using Interfaces .. 62

6.3 Adaptation ... 63
6.3.1 Defining Adapters ... 63

6.3.1.1 Subclassing Adapter ... 63
6.3.1.2 Creating an Adapter from Scratch 64
6.3.1.3 Declaring a Class as an Adapter Externally 65

6.3.2 Using Adapters ... 66
6.3.3 Controlling Adaptation ... 66

6.4 Property Traits ... 67
6.4.1 Property Factory Function .. 67
6.4.2 Caching a Property Value ... 68

6.5 Persistence .. 69
6.5.1 Pickling HasTraits Objects .. 69
6.5.2 Predefined Transient Traits .. 70
6.5.3 Overriding __getstate__() ... 71
6.5.4 Unpickling HasTraits Objects .. 71
6.5.5 Overriding __setstate__() .. 71

6.6 Useful Methods on HasTraits ... 72
6.6.1 add_trait() .. 72
6.6.2 clone_traits() ... 72
6.6.3 set() ... 73
6.6.4 add_class_trait() ... 73

6.7 Performance Considerations of Traits 74

 Index..77

Revision History

Version Date Description

1.0 12-May-05 Initial published version.

1.1 9-Feb-06 Converted source files from
OpenOffice.org to Microsoft Word.
Removed sections on Traits UI, as these are
now covered in the Traits UI User Guide.

1.2 3-Jan-07 Converted to a template that is more
compatible with Pydoh. Removed “Syntax
and Class Reference”, as this content is
now covered in the Traits API Reference.

14-Aug-2008 iii

Traits User Manual

Version Date Description

3 11-Apr-08 Revised and updated to reflect Traits 3.0.
Incremented the version number to match
the software version.

4 14-Aug-08 Minor updates for Traits 3.0 release.
Document version is now independent of
the software version.

iv 14-Aug-2008

1 Introduction
The Traits package for the Python language allows Python
programmers to use a special kind of type definition called a trait.
This document introduces the concepts behind, and usage of, the
Traits package.

For more information on the Traits package, refer to the Traits web
page at http://code.enthought.com/projects/traits . This page
contains links to downloadable packages, the source code
repository, and the Traits development website. Additional
documentation for the Traits package is available from the Traits
web page, including:

• Traits API Reference
• Traits UI User Guide
• Traits Technical Notes

1.1 What Are Traits?
A trait is a type definition that can be used for normal Python
object attributes, giving the attributes some additional
characteristics:

• Initialization—A trait has a default value, which is automatically
set as the initial value of an attribute before its first use in a
program.

• Validation—A trait attribute is explicitly typed. The type of a
trait-based attribute is evident in the code, and only values that
meet a programmer-specified set of criteria (i.e., the trait
definition) can be assigned to that attribute. Note that the
default value need not meet the criteria defined for assignment
of values. Traits 3.0 also supports defining and using abstract
interfaces, as well as adapters between interfaces.

• Deferral—The value of a trait attribute can be contained either
in the defining object or in another object that is deferred to by
the trait.

• Notification—Setting the value of a trait attribute can notify
other parts of the program that the value has changed.

• Visualization—User interfaces that allow a user to interactively
modify the values of trait attributes can be automatically
constructed using the traits’ definitions. This feature requires

14-Aug-2008 1

http://code.enthought.com/projects/traits

Traits User Manual

that a supported GUI toolkit be installed. However, if this
feature is not used, the Traits package does not otherwise
require GUI support. For details on the visualization features of
Traits, see the Traits UI User Guide.

A class can freely mix trait-based attributes with normal Python
attributes, or can opt to allow the use of only a fixed or open set of
trait attributes within the class. Trait attributes defined by a class
are automatically inherited by any subclass derived from the class.

The following example1 illustrates each of the features of the Traits
package. These features are elaborated in the rest of this guide.

all_traits_features.py --- Shows primary features of the Traits
package

from enthought.traits.api import Delegate, HasTraits, Instance,\
 Int, Str
import enthought.traits.ui

class Parent (HasTraits):

 # INITIALIZATION: last_name' is initialized to '':
 last_name = Str('')

class Child (HasTraits):

 age = Int

 # VALIDATION: 'father' must be a Parent instance:
 father = Instance(Parent)

 # DELEGATION: 'last_name' is delegated to father's
'last_name':
 last_name = Delegate('father')

 # NOTIFICATION: This method is called when 'age' changes:
 def _age_changed (self, old, new):
 print 'Age changed from %s to %s ' % (old, new)

1 All code examples in this guide that include a file name are also available as examples
in the tutorials/doc_examples/examples subdirectory of the Traits docs
directory. You can run them individually, or view them in a tutorial program by
running the command:
python <Traits dir>/enthought/traits/tutor/tutor.py <Traits dir>/
docs/tutorials/doc_examples

2 14-Aug-2008

Traits User Manual

Set up the example:
joe = Parent()
joe.last_name = 'Johnson'
moe = Child()
moe.father = joe

DELEGATION in action:
print "Moe's last name is %s " % moe.last_name
Result:
Moe's last name is Johnson

NOTIFICATION in action
moe.age = 10
Result:
Age changed from 0 to 10

VISUALIZATION: Displays a UI for editing moe's attributes
(if a supported GUI toolkit is installed)
moe.configure_traits()

In addition, traits can be used to define type-checked method
signatures. The Traits package ensures that the arguments and
return value of a method invocation match the traits defined for the
parameters and return value in the method signature. This feature
is described in Section 6.1.5, “Type-Checked Methods”.

1.2 Background
Python does not require the data type of variables to be declared.
As any experienced Python programmer knows, this flexibility has
both good and bad points. The Traits package was developed to
address some of the problems caused by not having declared
variable types, in those cases where problems might arise. In
particular, the motivation for Traits came as a direct result of work
done on Chaco, an open source scientific plotting package.

Chaco provides a set of high-level plotting objects, each of which
has a number of user-settable attributes, such as line color, text font,
relative location, and so on. To make the objects easy for scientists
and engineers to use, the attributes attempt to accept a wide variety
and style of values. For example, a color-related attribute of a
Chaco object might accept any of the following as legal values for
the color red:

14-Aug-2008 3

Traits User Manual

• 'red'
• 0xFF0000
• (1.0, 0.0, 0.0, 1.0)

Thus, the user might write:
plotitem.color = 'red'

In a predecessor to Chaco, providing such flexibility came at a cost:

• When the value of an attribute was used by an object internally
(for example, setting the correct pen color when drawing a plot
line), the object would often have to map the user-supplied
value to a suitable internal representation, a potentially
expensive operation in some cases.

• If the user supplied a value outside the realm accepted by the
object internally, it often caused disastrous or mysterious
program behavior. This behavior was often difficult to track
down because the cause and effect were usually widely
separated in terms of the logic flow of the program.

So, one of the main goals of the Traits package is to provide a form
of type checking that:

• Allows for flexibility in the set of values an attribute can have,
such as allowing 'red', 0xFF0000 and (1.0, 0.0, 0.0, 1.0) as
equivalent ways of expressing the color red.

• Catches illegal value assignments at the point of error, and
provides a meaningful and useful explanation of the error and
the set of allowable values.

• Eliminates the need for an object’s implementation to map user-
supplied attribute values into a separate internal representation.

In the process of meeting these design goals, the Traits package
evolved into a useful component in its own right, satisfying all of
the above requirements and introducing several additional,
powerful features of its own. In projects where the Traits package
has been used, it has proven valuable for enhancing programmers’
ability to understand code, during both concurrent development
and maintenance.

The Traits 3.0 package works with version 2.4 and later of Python,
and is similar in some ways to the Python property language
feature. Standard Python properties provide the similar capabilities
to the Traits package, but with more work on the part of the
programmer.

4 14-Aug-2008

2 Defining Traits: Initialization
and Validation

Using the Traits package in a Python program involves the
following steps:

1. Import the names you need from the Traits package
enthought.traits.api.

2. Define the traits you want to use.

3. Define classes derived from HasTraits (or a subclass of
HasTraits), with attributes that use the traits you have defined.

In practice, steps 2 and 3 are often combined by defining traits in-
line in an attribute definition. This strategy is used in many
examples in this guide. However, you can also define traits
independently, and reuse the trait definitions across multiple
classes and attributes (see Section 6.1.3, “Reusing Trait
Definitions”). Type-checked method signatures typically use
independently defined traits.

In order to use trait attributes in a class, the class must inherit from
the HasTraits class in the Traits package (or from a subclass of
HasTraits). The following example defines a class called Person that
has a single trait attribute weight, which is initialized to 150.0 and
can only take floating point values.

minimal.py --- Minimal example of using traits.

from enthought.traits.api import HasTraits, Float

class Person(HasTraits):
 weight = Float(150.0)

In this example, the attribute named weight specifies that the class
has a corresponding trait called weight. The value associated with
the attribute weight (i.e., Float(150.0)) specifies a predefined
trait provided with the Traits package, which requires that values
assigned be of the standard Python type float. The value 150.0
specifies the default value of the trait.

The value associated with each class-level attribute determines the
characteristics of the instance attribute identified by the attribute
name. For example:

14-Aug-2008 5

Traits User Manual

>>> from minimal import Person
>>> # instantiate the class
>>> joe = Person()
>>> # Show the default value
>>> joe.weight
150.0
>>> # Assign new values
>>> joe.weight = 161.9 # OK to assign a float
>>> joe.weight = 162 # OK to assign an int
>>> joe.weight = 'average' # Error to assign a string
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\ src\traits\enthought\traits\trait_handlers.py", line
163, in error
 raise TraitError, (object, name, self.info(),
value) enthought.traits.trait_errors.TraitError: The 'weight'
trait of a Person instance must be a value of type 'float', but a
value of average was specified.

In this example, joe is an instance of the Person class defined in the
previous example. The joe object has an instance attribute weight,
whose initial value is the default value of the Person.weight trait
(150.0), and whose assignment is governed by the Person.weight
trait’s validation rules. Assigning an integer to weight is acceptable
because there is no loss of precision (but assigning a float to an Int
trait would cause an error).

The Traits package allows creation of a wide variety of trait types,
ranging from very simple to very sophisticated. The following
section presents some of the simpler, more commonly used forms.

2.1 Predefined Traits
The Traits package includes a large number of predefined traits for
commonly used Python data types. In the simplest case, you can
assign the trait name to an attribute of a class derived from
HasTraits; any instances of the class will have that attribute
initialized to the built-in default value for the trait. For example:
account_balance = Float

This statement defines an attribute whose value must be a floating
point number, and whose initial value is 0.0 (the built-in default
value for Floats).

If you want to use an initial value other than the built-in default,
you can pass it as an argument to the trait:

6 14-Aug-2008

Traits User Manual

account_balance = Float(10.0)

Most predefined traits are callable,2 and can accept a default value
and possibly other arguments; all that are callable can also accept
metadata as keyword arguments. (See Section 2.1.2 for information
on trait signatures, and see Section 2.2 for information on metadata
arguments.)

2.1.1 Predefined Traits for Simple Types
There are two categories of predefined traits corresponding to
Python simple types: those that coerce values, and those that cast
values. These categories vary in the way that they handle assigned
values that do not match the type explicitly defined for the trait.
However, they are similar in terms of the Python types they
correspond to, and their built-in default values, as listed in Table 1.

Table 1 Predefined defaults for simple types

Coercing Trait Casting Trait Python Type Built-in Default
Value

Bool CBool Boolean False

Complex CComplex Complex
number

0+0j

Float CFloat Floating
point number

0.0

Int CInt Plain integer 0

Long CLong Long integer 0L

Str CStr String ''

Unicode CUnicode Unicode u''

2.1.1.1 Trait Type Coercion
For trait attributes defined using the predefined “coercing” traits, if
a value is assigned to a trait attribute that is not of the type defined
for the trait, but it can be coerced to the required type, then the

2 Most callable predefined traits are classes, but a few are functions. The distinction does
not make a difference unless you are trying to extend an existing predefined trait. See
the Traits API Reference for details on particular traits, and see Chapter 5 for details on
extending existing traits.

14-Aug-2008 7

Traits User Manual

coerced value is assigned to the attribute. If the value cannot be
coerced to the required type, a TraitError exception is raised. Only
widening coercions are allowed, to avoid any possible loss of
precision. Table 2 lists traits that coerce values, and the types that
each coerces.

Table 2 Type coercions permitted for coercing traits

Trait Coercible Types

Complex Floating point number, plain integer

Float Plain integer

Long Plain integer

Unicode String

2.1.1.2 Trait Type Casting
For trait attributes defined using the predefined “casting” traits, if a
value is assigned to a trait attribute that is not of the type defined
for the trait, but it can be cast to the required type, then the cast
value is assigned to the attribute. If the value cannot be cast to the
required type, a TraitError exception is raised. Internally, casting is
done using the Python built-in functions for type conversion:

• bool()
• complex()
• float()
• int()
• str()
• unicode()

The following example illustrates the difference between coercing
traits and casting traits.

>>> from enthought.traits.api import HasTraits, Float, CFloat
>>> class Person (HasTraits):
... weight = Float
... cweight = CFloat
>>>
>>> bill = Person()
>>> bill.weight = 180 # OK, coerced to 180.0
>>> bill.cweight = 180 # OK, cast to float(180)
>>> bill.weight = '180' # Error, invalid coercion
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\src\traits\enthought\traits\trait_handlers.py",

8 14-Aug-2008

Traits User Manual

line 163, in error
 raise TraitError, (object, name, self.info(), value)
enthought.traits.trait_errors.TraitError: The 'weight' trait of a
Person instance must be a value of type 'float', but a value of
180 was specified.
>>> bill.cweight = '180' # OK, cast to float('180')
>>> print bill.cweight
180.0
>>>

2.1.2 Other Predefined Traits
The Traits package provides a number of other predefined traits
besides those for simple types, corresponding to other commonly
used data types; these predefined traits are listed in Table 3. Refer
to the Traits API Reference, in the section for the module
enthought.traits.traits, for details. Most can be used either as simple
names, which use their built-in default values, or as callables,
which can take additional arguments. If the trait cannot be used as
a simple name, it is omitted from the Name column of the table.

Table 3 Predefined traits beyond simple types

Name Callable Signature

Any Any(value = None, **metadata)

Array Array(dtype = None,
 shape = None,
 value = None,
 typecode = None,
 **metadata)

Button Button(label = '',
 image = None,
 style = 'button',
 orientation = 'vertical',
 width_padding = 7,
 height_padding = 5,
 **metadata)

Callable Callable(value = None,
 **metadata)

14-Aug-2008 9

Traits User Manual

Name Callable Signature

CArray CArray(dtype = None,
 shape = None,
 value = None,
 typecode = None,
 **metadata)

Class Class(value, **metadata)

Code Code(value = '',
 minlen = 0,
 maxlen = sys.maxint,
 regex = '',
 **metadata)

Color Color(*args, **metadata)

CSet CSet(trait=None, value=None,
 items=True, **metadata)

n/a Constant(value, **metadata)

Dict,
DictStrAny,
DictStrBool,
DictStrFloat,
DictStrInt,
DictStrList,
DictStrLong,
DictStrStr

Dict(key_trait = None,
 value_trait = None,
 value = None,
 items = True,
 **metadata)

Directory Directory(value = '',
 auto_set = False,
 entries = 10,
 exists = False,
 **metadata)

Disallow n/a

n/a Either (val1, val2, …, valN,
 **metadata)

10 14-Aug-2008

Traits User Manual

Name Callable Signature

Enum Enum(*values, **metadata)

Event Event(trait = None, **metadata)

Expression Expression(value='0', **metadata)

false n/a

File File(value = '',
 filter = None,
 auto_set = False,
 entries = 10,
 exists = False,
 **metadata)

Font Font(*args, **metadata)

Function Function(value=None, **metadata)

Generic Generic(value = None, **metadata)

generic_trait n/a

HTML HTML(value = '',
 minlen = 0,
 maxlen = sys.maxint,
 regex = '',
 **metadata)

Instance Instance(klass = None,
 factory = None,
 args = None,
 kw = None,
 allow_none = True,
 adapt = None,
 module = None,
 **metadata)

14-Aug-2008 11

Traits User Manual

Name Callable Signature

List, ListBool,
ListClass,
ListComplex,
ListFloat,
ListFunction,
ListInstance,
ListInt,
ListMethod,
ListStr, ListThis,
ListUnicode

List(trait = None,
 value = None,
 minlen = 0,
 maxlen = sys.maxint,
 items = True,
 **metadata)

Method Method (**metadata)

missing n/a

Module Module (**metadata)

Password Password(value = '',
 minlen = 0,
 maxlen = sys.maxint,
 regex = '',
 **metadata)

Property Property(fget = None,
 fset = None,
 fvalidate = None,
 force = False,
 handler = None,
 trait = None,
 **metadata)

See Section 6.4, “Property Traits”, for details.

Python Python (value = None, **metadata)

PythonValue PythonValue(value = None,
 **metadata)

12 14-Aug-2008

Traits User Manual

Name Callable Signature

Range Range(low = None,
 high = None,
 value = None,
 exclude_low = False,
 exclude_high = False,
 **metadata)

ReadOnly ReadOnly(value=Undefined,
**metadata)

Regex Regex(value = '',
 regex = '.*',
 **metadata)

RGBColor RGBColor(*args, **metadata)

Set Set(trait=None, value=None,
 items=True, **metadata)

String String(value = '',
 minlen = 0,
 maxlen = sys.maxint,
 regex = '',
 **metadata)

This n/a

ToolbarButton ToolbarButton(label = '',
 image = None,
 style = 'toolbar',
 orientation =
 'vertical',
 width_padding = 2,
 height_padding = 2,
 **metadata)

true n/a

Tuple Tuple(*traits, **metadata)

14-Aug-2008 13

Traits User Manual

Name Callable Signature

Type Type(value = None,
 klass = None,
 allow_none = True,
 **metadata)

undefined n/a

UUID3 UUID(**metadata)

WeakRef WeakRef(klass =
'enthought.traits.HasTraits',
allow_none = False,
adapt = 'yes',
**metadata)

2.1.2.1 This and self
A couple of predefined traits that merit special explanation are This
and self. They are intended for attributes whose values must be of
the same class (or a subclass) as the enclosing class. The default
value of This is None; the default value of self is the object
containing the attribute.

The following is an example of using This:

this.py --- Example of This predefined trait

from enthought.traits.api import HasTraits, This

class Employee(HasTraits):
 manager = This

This example defines an Employee class, which has a manager trait
attribute, which accepts only other Employee instances as its value.
It might be more intuitive to write the following:

bad_self_ref.py --- Non-working example with self- referencing
class definition
from enthought.traits.api import HasTraits, Instance
class Employee(HasTraits):
 manager = Instance(Employee)

3 Available in Python 2.5.

14 14-Aug-2008

Traits User Manual

However, the Employee class is not fully defined at the time that
the manager attribute is defined. Handling this common design
pattern is the main reason for providing the This trait.

Note that if a trait attribute is defined using This on one class and is
referenced on an instance of a subclass, the This trait verifies values
based on the class of the instance being referenced. For example:

>>> from enthought.traits.api import HasTraits, This
>>> class Employee(HasTraits):
... manager = This
...
>>> class Executive(Employee):
... pass
...
>>> fred = Employee()
>>> mary = Executive()
>>> # The following is OK, because fred's manager can be an
>>> # instance of Employee or any subclass.
>>> fred.manager = mary
>>> mary.manager = fred
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\src\trait\enthought\traits\trait_handlers.py", line
163, in error
 raise TraitError, (object, name, self.info(), value)
enthought.traits.trait_errors.TraitError: The 'manager' trait of
an Executive instance must be an instance of the same type as the
receiver, but a value of <__main__.Employee object at 0x00994330>
was specified.

2.1.2.2 List of Possible Values
You can define a trait whose possible values include disparate
types. To do this, use the predefined Enum trait, and pass it a list of
all possible values. The values must all be of simple Python data
types, such as strings, integers, and floats, but they do not have to
be all of the same type. This list of values can be a typical parameter
list, an explicit (bracketed) list, or a variable whose type is list. The
first item in the list is used as the default value.

A trait defined in this fashion can accept only values that are
contained in the list of permitted values. The default value is the
first value specified; it is also a valid value for assignment.

>>> from enthought.traits.api import Enum, HasTraits, Str
>>> class InventoryItem(HasTraits):
... name = Str # String value, default is ''
... stock = Enum(None, 0, 1, 2, 3, 'many')

14-Aug-2008 15

Traits User Manual

... # Enumerated list, default value is

... #'None'

...
>>> hats = InventoryItem()
>>> hats.name = 'Stetson'

>>> print '%s: %s' % (hats.name, hats.stock)
Stetson: None

>>> hats.stock = 2 # OK
>>> hats.stock = 'many' # OK
>>> hats.stock = 4 # Error, value is not in \
>>> # permitted list
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\src\traits\enthought\traits\trait_handlers.py", line
163, in error
 raise TraitError, (object, name, self.info(), value)
enthought.traits.trait_errors.TraitError: The 'stock' trait of an
InventoryItem instance must be None or 0 or 1 or 2 or 3 or 'many',
but a value of 4 was specified.

This example defines an InventoryItem class, with two trait
attributes, name, and stock. The name attribute is simply a string.
The stock attribute has an initial value of None, and can be
assigned the values None, 0, 1, 2, 3, and 'many'. The example then
creates an instance of the InventoryItem class named hats, and
assigns values to its attributes.

2.2 Trait Metadata
Trait objects can contain metadata attributes, which fall into three
categories:

• Internal attributes, which you can query but not set.
• Recognized attributes, which you can set to determine the

behavior of the trait.
• Arbitrary attributes, which you can use for your own purposes.

You can specify values for recognized or arbitrary metadata
attributes by passing them as keyword arguments to callable traits.
The value of each keyword argument becomes bound to the
resulting trait object as the value of an attribute having the same
name as the keyword.

16 14-Aug-2008

Traits User Manual

2.2.1 Internal Metadata Attributes
The following metadata attributes are used internally by the Traits
package, and can be queried:

• array: Indicates whether the trait is an array.
• default: Returns the default value for the trait, if known;

otherwise it returns Undefined.
• default_kind: Returns a string describing the type of value

returned by the default attribute for the trait. The possible
values are:
• value: The default attribute returns the actual default

value.
• list: A copy of the list default value.
• dict: A copy of the dictionary default value.
• self: The default value is the object the trait is bound to; the

default attribute returns Undefined.
• factory: The default value is created by calling a factory;

the default attribute returns Undefined.
• method: The default value is created by calling a method on

the object the trait is bound to; the default attribute returns
Undefined.

• delegate: The name of the attribute on this object that references
the object that this object delegates to.

• inner_traits: Returns a tuple containing the “inner” traits for the
trait. For most traits, this is empty, but for List and Dict traits, it
contains the traits that define the items in the list or the keys
and values in the dictionary.

• parent: The trait from which this one is derived.
• prefix: A prefix or substitution applied to the delegate attribute.

See Section 4, “Deferring Trait” for details.
• trait_type: Returns the type of the trait, which is typically a

handler derived from TraitType.
• type: One of the following, depending on the nature of the trait:

• constant
• delegate
• event
• property
• trait

14-Aug-2008 17

Traits User Manual

2.2.2 Recognized Metadata Attributes
The following metadata attributes are not predefined, but are
recognized by HasTraits objects:

• desc: A string describing the intended meaning of the trait. It is
used in exception messages and fly-over help in user interface
trait editors.

• editor: Specifies an instance of a subclass of TraitEditor to use
when creating a user interface editor for the trait. Refer to the
Traits UI User Guide for more information on trait editors.

• label: A string providing a human-readable name for the trait. It
is used to label trait attribute values in user interface trait
editors.

• rich_compare: A Boolean indicating whether the basis for
considering a trait attribute value to have changed is a “rich”
comparison (True, the default), or simple object identity (False).
This attribute can be useful in cases where a detailed
comparison of two objects is very expensive, or where you do
not care if the details of an object change, as long as the same
object is used.

• trait_value: A Boolean indicating whether the trait attribute
accepts values that are instances of TraitValue. The default is
False. The TraitValue class provides a mechanism for
dynamically modifying trait definitions. See the Traits API
Reference for details on TraitValue. If trait_value is True, then
setting the trait attribute to TraitValue(), with no arguments,
resets the attribute to it original default value.

• transient: A Boolean indicating whether the trait value is
persisted when the object containing it is persisted. The default
value for most predefined traits is True. You can set it to False
for traits whose values you know you do not want to persist. Do
not set it to False on traits where it is set internally to True, as
doing so is likely to create unintended consequences. See
Section 6.5, “Persistence” for more information.

Other metadata attributes may be recognized by specific
predefined traits.

2.2.3 Accessing Metadata Attributes
Here is an example of setting trait metadata using keyword
arguments:

18 14-Aug-2008

Traits User Manual

keywords.py --- Example of trait keywords
from enthought.traits.api import HasTraits, Str

class Person(HasTraits):
 first_name = Str('',
 desc='first or personal name',
 label='First Name')
 last_name = Str('',
 desc='last or family name',
 label='Last Name')

In this example, in a user interface editor for a Person object, the
labels “First Name” and “Last Name” would be used for entry
fields corresponding to the first_name and last_name trait
attributes. If the user interface editor supports rollover tips, then
the first_name field would display “first or personal name” when
the user moves the mouse over it; the last_name field would
display “last or family name” when moused over.

To get the value of a trait metadata attribute, you can use the trait()
method on a HasTraits object to get a reference to a specific trait,
and then access the metadata attribute:

metadata.py --- Example of accessing trait metadata attributes
from enthought.traits.api import HasTraits, Int, List, Float, \
 Instance, Any, TraitType

class Foo(HasTraits): pass

class Test(HasTraits):
 i = Int(99)
 lf = List(Float)
 foo = Instance(Foo, ())
 any = Any([1, 2, 3])

t = Test()

print t.trait('i').default # 99
print t.trait('i').default_kind # value
print t.trait('i').inner_traits # ()
print t.trait('i').is_trait_type(Int) # True
print t.trait('i').is_trait_type(Float) # False

print t.trait('lf').default # []
print t.trait('lf').default_kind # list
print t.trait('lf').inner_traits
 # (<enthought.traits.traits.CTrait object at 0x01B24138>,)
print t.trait('lf').is_trait_type(List) # True
print t.trait('lf').is_trait_type(TraitType) # True
print t.trait('lf').is_trait_type(Float) # False

14-Aug-2008 19

Traits User Manual

print t.trait('lf').inner_traits[0].is_trait_type(Float)
 # True
print t.trait('foo').default # <undefined>
print t.trait('foo').default_kind # factory
print t.trait('foo').inner_traits # ()
print t.trait('foo').is_trait_type(Instance) # True
print t.trait('foo').is_trait_type(List) # False

print t.trait('any').default # [1, 2, 3]
print t.trait('any').default_kind # list
print t.trait('any').inner_traits # ()
print t.trait('any').is_trait_type(Any) # True
print t.trait('any').is_trait_type(List) # False

20 14-Aug-2008

3 Trait Notification
When the value of an attribute changes, other parts of the program
might need to be notified that the change has occurred. The Traits
package makes this possible for trait attributes. This functionality
lets you write programs using the same, powerful event-driven
model that is used in writing user interfaces and for other problem
domains.

Requesting trait attribute change notifications can be done in
several ways:

• Dynamically, by calling on_trait_change() or on_trait_event() to
establish (or remove) change notification handlers.

• Statically, by decorating methods on the class with the
@on_trait_change decorator to indicate that they handle
notification for specified attributes.

• Statically, by using a special naming convention for methods on
the class to indicate that they handle notifications for specific trait
attributes.

3.1 Dynamic Notification
Dynamic notification is useful in cases where a notification handler
cannot be defined on the class (or a subclass) whose trait attribute
changes are to be monitored, or if you want to monitor changes on
certain instances of a class, but not all of them. To use dynamic
notification, you define a handler method or function, and then
invoke the on_trait_change() or on_trait_event() method to register
that handler with the object being monitored. Multiple handlers
can be defined for the same object, or even for the same trait
attribute on the same object.

The handler registration methods have the following signatures:

obj.on_trait_change(handler, name=None,
remove=False, dispatch='same')

obj.on_trait_event(handler, name=None,
remove=False, dispatch='same')

• handler—Specifies the function or bound method to be called
whenever the trait attributes specified by the name parameter
are modified.

14-Aug-2008 21

Traits User Manual

• name—Specifies trait attributes whose changes trigger the
handler being called. If this parameter is omitted or is None, the
handler is called whenever any trait attribute of the object is
modified. The syntax supported by this parameter is discussed
in Section 3.1.2.

• remove—If True (or non-zero), then handler will no longer be
called when the specified trait attributes are modified. In other
words, it causes the handler to be “unhooked”.

• dispatch—String indicating the thread on which notifications
must be run. In most cases, it can be omitted. See the Traits API
Reference for details on non-default values.

3.1.1 Example of a Dynamic Notification
Handler

Setting up a dynamic trait attribute change notification handler is
illustrated in the following example:

dynamic_notification.py --- Example of dynamic notification
from enthought.traits.api import Float, HasTraits, Instance

class Part (HasTraits):
 cost = Float(0.0)

class Widget (HasTraits):
 part1 = Instance(Part)
 part2 = Instance(Part)
 cost = Float(0.0)

 def __init__(self):
 self.part1 = Part()
 self.part2 = Part()
 self.part1.on_trait_change(self.update_cost, 'cost')
 self.part2.on_trait_change(self.update_cost, 'cost')

 def update_cost(self):
 self.cost = self.part1.cost + self.part2.cost

Example:
w = Widget()
w.part1.cost = 2.25
w.part2.cost = 5.31
print w.cost
Result: 7.56

22 14-Aug-2008

Traits User Manual

In this example, the Widget constructor sets up a dynamic trait
attribute change notification so that its update_cost() method is
called whenever the cost attribute of either its part1 or part2
attribute is modified. This method then updates the cost attribute
of the widget object.

3.1.2 The name Parameter
The name parameter of on_trait_change() and on_trait_event()
provides significant flexibility in specifying the name or names of
one or more trait attributes that the handler applies to. It supports
syntax for specifying names of trait attributes not just directly on
the current object, but also on sub-objects referenced by the current
object.

The name parameter can take any of the following values:

• Omitted, None, or 'anytrait': The handler applies to any
trait attribute on the object.

• A name or list of names: The handler applies to each trait
attribute on the object with the specified names.

• An extended name or list of extended names: The handler
applies to each trait attribute that matches the specified
extended names.

3.1.2.1 Syntax
Extended names use the following syntax:
xname ::= xname2['.'xname2]*
xname2 ::=
 (xname3 | '['xname3[','xname3]*']') ['*']
xname3 ::= xname | ['+'|'-'][name] |
 name['?' | ('+'|'-')[name]]
A name is any valid Python attribute name.

14-Aug-2008 23

Traits User Manual

3.1.2.2 Semantics
Table 4 Semantics of extended name notation

Pattern Meaning

item1.item2 A trait named item1 contains an object
(or objects, if item1 is a list or
dictionary), with a trait named item2.
Changes to either item1 or item2 cause
a notification to be generated.

item1:item2 A trait named item1 contains an object
(or objects, if item1 is a list or
dictionary), with a trait named item2.
Changes to item2 cause a notification,
while changes to item1 do not (i.e., the
‘:’ indicates that changes to the link
object should not be reported.

[item1, item2, …,
itemN]

A list that matches any of the specified
items. Note that at the topmost level,
the surrounding square brackets are
optional.

item[] A trait named item is a list. Changes to
item or to its members causes a
notification.

name? If the current object does not have an
attribute called name, the reference can
be ignored. If the ‘?’ character is
omitted, the current object must have
a trait called name; otherwise, an
exception is raised.

prefix+ Matches any trait attribute on the
object whose name begins with prefix.

+metadata_name Matches any trait on the object that
has a metadata attribute called
metadata_name.

-metadata_name Matches any trait on the current object
that does not have a metadata attribute
called metadata_name.

24 14-Aug-2008

Traits User Manual

Pattern Meaning

prefix+metadata_name Matches any trait on the object whose
name begins with prefix and that has a
metadata attribute called
metadata_name.

prefix-metadata_name Matches any trait on the object whose
name begins with prefix and that does
not have a metadata attribute called
metadata_name.

+ Matches all traits on the object.

pattern* Matches object graphs where pattern
occurs one or more times. This option
is useful for setting up listeners on
recursive data structures like trees or
linked lists.

ExamplesTable 5 Examples of extended name notation

Example Meaning

'foo, bar, baz' Matches object.foo, object.bar, and
object.baz.

['foo', 'bar',
'baz']

Equivalent to 'foo, bar, baz', but
may be useful in cases where the
individual items are computed.

'foo.bar.baz' Matches object.foo.bar.baz

'foo.[bar,baz]' Matches object.foo.bar and object.foo.baz

'foo[]' Matches a list trait on object named foo.

'([left,right]).
name*'

Matches the name trait of each tree node
object that is linked from the left or right
traits of a parent node, starting with the
current object as the root node. This
pattern also matches the name trait of the
current object, as the left and right
modifiers are optional.

14-Aug-2008 25

Traits User Manual

Example Meaning

'+dirty' Matches any trait on the current object
that has a metadata attribute named dirty
set.

'foo.+dirty' Matches any trait on object.foo that has a
metadata attribute named dirty set.

'foo.[bar,-dirty]' Matches object.foo.bar or any trait on
object.foo that does not have a metadata
attribute named dirty set.

For a pattern that references multiple objects, any of the
intermediate (non-final) links can traits of type Instance, List, or
Dict. In the case of List or Dict traits, the subsequent portion of the
pattern is applied to each item in the list or value in the dictionary.
For example, if self.children is a list, a handler set for
'children.name' listens for changes to the name trait for each
item in the self.children list.

The handler routine is also invoked when items are added or
removed from a list or dictionary, because this is treated as an
implied change to the item’s trait being monitored.

3.1.3 Notification Handler Signatures
The handler passed to on_trait_change() or on_trait_event() can
have any one of the following signatures:

handler()
handler(new)
handler(name, new)
handler(object, name, new)
handler(object, name, old, new)
These signatures use the following parameters:

• object—The object whose trait attribute changed.
• name—The attribute that changed. If one of the objects in a

sequence is a List or Dict, and its membership changes, then this
is the name of the trait that reference it, with _items appended.
For example, if the handler is monitoring 'foo.bar.baz',
where bar is a List, and an item is added to bar, then the value
of the name parameter is bar_items.

26 14-Aug-2008

Traits User Manual

• new—The new value of the trait attribute that changed. For
changes to List and Dict objects, this is a list of items that were
added.

• old—The old value of the trait attribute that changed. For
changes to List and Dict object, this is a list of items that were
deleted. For event traits, this is Undefined.

If the handler is a bound method, it also implicitly has self as a first
argument.

3.1.4 Dynamic Handler Special Cases
In the one- and two-parameter signatures, the handler does not
receive enough information to distinguish between a change to the
final trait attribute being monitored, and a change to an
intermediate object. In this case, the notification dispatcher
attempts to map a change to an intermediate object to its effective
change on the final trait attribute. This mapping is only possible if
all the intermediate objects are single values (such as Instance or
Any traits), and not List or Dict traits. If the change involves a List
or Dict, then the notification dispatcher raises a TraitError when
attempting to call a one- or two-parameter handler function,
because it cannot unambiguously resolve the effective value for the
final trait attribute.

Zero-parameter signature handlers receive special treatment if the
final trait attribute is a List or Dict, and if the string used for the
names parameter is not just a simple trait name. In this case, the
handler is automatically called when the membership of a final List
or Dict trait is changed. This behavior can be useful in cases where
the handler needs to know only that some aspect of the final trait
has changed. For all other signatures, the handler function must be
explicitly set for the name_items trait in order to called when the
membership of the name trait changes. (Note that the prefix+ and
item[] syntaxes are both ways to specify both a trait name and its
_items variant.)

This behavior for zero-parameter handlers is not triggered for
simple trait names, to preserve compatibility with code written for
versions of Traits prior to 3.0. Earlier versions of Traits required
handlers to be separately set for a trait and its items, which would
result in redundant notifications under the Traits 3.0 behavior.
Earlier versions also did not support the extended trait name

14-Aug-2008 27

Traits User Manual

syntax, accepting only simple trait names. Therefore, to use the
“new style” behavior of zero-parameter handlers, be sure to
include some aspect of the extended trait name syntax in the name
specifier.

list_notifier.py –-- Example of zero-parameter handlers for
an object containing a list
from enthought.traits.api import HasTraits, List

class Employee: pass

class Department(HasTraits):
 employees = List(Employee)

def a_handler(): print "A handler"
def b_handler(): print "B handler"
def c_handler(): print "C handler"

fred = Employee()
mary = Employee()
donna = Employee()

dept = Department(employees=[fred, mary])

"Old style" name syntax
a_handler is called only if the list is replaced:
dept.on_trait_change(a_handler, 'employees')
b_handler is called if the membership of the list changes:
dept.on_trait_change(b_handler, 'employees_items')

"New style" name syntax
c_handler is called if 'employees' or its membership change:
dept.on_trait_change(c_handler, 'employees[]')

print "Changing list items"
dept.employees[1] = donna # Calls B and C
print "Replacing list"
dept.employees = [donna] # Calls A and C

3.2 Static Notification
The static approach is the most convenient option, but it is not
always possible. Writing a static change notification handler
requires that, for a class whose trait attribute changes you are
interested in, you write a method on that class (or a subclass).
Therefore, you must know in advance what classes and attributes
you want notification for, and you must be the author of those

28 14-Aug-2008

Traits User Manual

classes. Static notification also entails that every instance of the
class has the same notification handlers.

To indicate that a particular method is a static notification handler
for a particular trait, you have two options:

• Apply the @on_trait_change decorator to the method.
• Give the method a special name based on the name of the trait

attribute it “listens” to.

3.2.1 Handler Decorator
The most flexible method of statically specifying that a method is a
notification handler for a trait is to use the @on_trait_change()
decorator. The @on_trait_change() decorator is more flexible than
specially-named method handlers, because it supports the very
powerful extended trait name syntax (see Section 3.1.2, “The name
Parameter”). You can use the decorator to set handlers on multiple
attributes at once, on trait attributes of linked objects, and on
attributes that are selected based on trait metadata.

3.2.1.1 Decorator Syntax
The syntax for the decorator is:
@on_trait_change('extended_trait_name')
def any_method_name(self, …):
 …

In this case, extended_trait_name is a specifier for one or more trait
attributes, using the syntax described in Section 3.1.2, “The name
Parameter”.

The signatures that are recognized for “decorated” handlers are the
same as those for dynamic notification handlers, as described in
Section 3.1. That is, they can have an object parameter, because they
can handle notifications for trait attributes that do not belong to the
same object.

3.2.1.2 Decorator Semantics
The functionality provided by the @on_trait_change() decorator is
identical to that of specially-named handlers, in that both result in a
call to on_trait_change() to register the method as a notification

14-Aug-2008 29

Traits User Manual

handler. However, the two approaches differ in when the call is
made. Specially-named handlers are registered at class construction
time; decorated handers are registered at instance creation time,
prior to setting any object state.

A consequence of this difference is that the @on_trait_change()
decorator causes any default initializers for the traits it references to
be executed at instance construction time. In the case of specially-
named handlers, any default initializers are executed lazily.

3.2.2 Specially-named Notification
Handlers

There are two kinds of special method names that can be used for
static trait attribute change notifications. One is attribute-specific,
and the other applies to all trait attributes on a class.

To notify about changes to a single trait attribute named name,
define a method named _name_changed() or _name_fired(). The
leading underscore indicates that attribute-specific notification
handlers are normally part of a class´s private API. Methods named
_name_fired() are normally used with traits that are events,
described in Section 3.3, “Trait Events”.

To notify about changes to any trait attribute on a class, define a
method named _anytrait_changed().

Both of these types of static trait attribute notification methods are
illustrated in the following example:

static_notification.py --- Example of static attribute
notification
from enthought.traits.api import HasTraits, Float

class Person(HasTraits):
 weight_kg = Float(0.0)
 height_m = Float(1.0)
 bmi = Float(0.0)

 def _weight_kg_changed(self, old, new):
 print 'weight_kg changed from %s to %s ' % (old, new)
 if self.height_m != 0.0:
 self.bmi = self.weight_kg / (self.height_m**2)

 def _anytrait_changed(self, name, old, new):
 print 'The %s trait changed from %s to %s ' \
 % (name, old, new)

30 14-Aug-2008

Traits User Manual

"""
>>> bob = Person()
>>> bob.height_m = 1.75
The height_m trait changed from 1.0 to 1.75
>>> bob.weight_kg = 100.0
The weight_kg trait changed from 0.0 to 100.0
weight_kg changed from 0.0 to 100.0
The bmi trait changed from 0.0 to 32.6530612245
"""

In this example, the attribute-specific notification function is
_weight_kg_changed(), which is called only when the weight_kg
attribute changes. The class-specific notification handler is
_anytrait_changed(), and is called when weight_kg, height_m, or
bmi changes. Thus, both handlers are called when the weight_kg
attribute changes. Also, the _weight_kg_changed() function
modifies the bmi attribute, which causes _anytrait_changed() to be
called for that attribute.

The arguments that are passed to the trait attribute change
notification method depend on the method signature and on which
type of static notification handler it is.

3.2.3 Attribute-specific Handler Signatures
For an attribute specific notification handler, the method signatures
supported are:

_name_changed(self)
_name_changed(self, new)
_name_changed(self, old, new)
_name_changed(self, name, old, new)
The method name can also be _name_fired(), with the same set of
signatures.

In these signatures:

• new is the new value assigned to the trait attribute. For List and
Dict objects, this is a list of the items that were added.

• old is the old value assigned to the trait attribute. For List and
Dict objects, this is a list of the items that were deleted.

14-Aug-2008 31

Traits User Manual

• name is the name of the trait attribute. The extended trait name
syntax is not supported.4

Note that these signatures follow a different pattern for argument
interpretation from dynamic handlers and decorated static
handlers. Both of the following methods define a handler for an
object’s name trait:
def _name_changed(self, arg1, arg2, arg3):

pass

@on_trait_change('name')
def some_method(self, arg1, arg2, arg3):

pass

However, the interpretation of arguments to these methods differs,
as shown in Table 6.

Table 6 Handler argument interpretation

Argument _name_changed @on_trait_change
arg1 name object
arg2 old name
arg3 new new

3.2.4 General Static Handler Signatures
In the case of a non-attribute specific handler, the method
signatures supported are:

_anytrait_changed(self)
_anytrait_changed(self, name)
_anytrait_changed(self, name, new)
_anytrait_changed(self, name, old, new)
The meanings for name, new, and old are the same as for attribute-
specific notification functions.

4 For List and Dict trait attributes, you can define a handler with the name
_name_items_changed(), which receives notifications of changes to the contents of the
list or dictionary. This feature exists for backward compatibility. The preferred
approach is to use the @on_trait_change decorator with extended name syntax. For a
static _name_items_changed() handler, the new parameter is a TraitListEvent or
TraitDictEvent whose index, added, and removed attributes indicate the nature of the
change, and the old parameter is Undefined.

32 14-Aug-2008

Traits User Manual

3.3 Trait Events
The Traits package defines a special type of trait called an event.
Events are instances of (subclasses of) the Event class.

There are two major differences between a normal trait and an
event:

• All notification handlers associated with an event are called
whenever any value is assigned to the event. A normal trait
attribute only calls its associated notification handlers when the
previous value of the attribute is different from the new value
being assigned to it.

• An event does not use any storage, and in fact does not store the
values assigned to it. Any value assigned to an event is reported
as the new value to all associated notification handlers, and then
immediately discarded. Because events do not retain a value,
the old argument to a notification handler associated with an
event is always the special Undefined object (see Section 3.4).
Similarly, attempting to read the value of an event results in a
TraitError exception, because an event has no value.

As an example of an event, consider:

event.py --- Example of trait event
from enthought.traits.api import Event, HasTraits, List, Tuple

point_2d = Tuple(0, 0)

class Line2D(HasTraits):
 points = List(point_2d)
 line_color = RGBAColor('black')
 updated = Event

 def redraw():
 pass # Not implemented for this example

 def _points_changed():
 self.updated = True

 def _updated_fired():
 self.redraw()

In support of the use of events, the Traits package understands
attribute-specific notification handlers with names of the form
_name_fired(), with signatures identical to the _name_changed()
functions. In fact, the Traits package does not check whether the
trait attributes that _name_fired() handlers are applied to are

14-Aug-2008 33

Traits User Manual

actually events. The function names are simply synonyms for
programmer convenience.

Similarly, a function named on_trait_event() can be used as a
synonym for on_trait_change() for dynamic notification.

3.4 Undefined Object
Python defines a special, singleton object called None. The Traits
package introduces an additional special, singleton object called
Undefined.

The Undefined object is used to indicate that a trait attribute has
not yet had a value set (i.e., its value is undefined). Undefined is
used instead of None, because None is often used for other
meanings, such as that the value is not used. In particular, when a
trait attribute is first assigned a value and its associated trait
notification handlers are called, Undefined is passed as the value of
the old parameter to each handler, to indicate that the attribute
previously had no value. Similarly, the value of a trait event is
always Undefined.

34 14-Aug-2008

4 Deferring Trait Definitions
One of the advanced capabilities of the Traits package is its support
for trait attributes to defer their definition and value to another
object than the one the attribute is defined on. This has many
applications, especially in cases where objects are logically
contained within other objects and may wish to inherit or derive
some attributes from the object they are contained in or associated
with. Deferring leverages the common “has-a” relationship
between objects, rather than the “is-a” relationship that class
inheritance provides.

There are two ways that a trait attribute can defer to another
object’s attribute: delegation and prototyping. In delegation, the
deferring attribute is a complete reflection of the delegate attribute.
Both the value and validation of the delegate attribute are used for
the deferring attribute; changes to either one are reflected in both.
In prototyping, the deferring attribute gets its value and validation
from the prototype attribute, until the deferring attribute is explicitly
changed. At that point, while the deferring attribute still uses the
prototype’s validation, the link between the values is broken, and
the two attributes can change independently. This is essentially a
“copy on write” scheme.

The concepts of delegation and prototyping are implemented in the
Traits package by two classes derived from TraitType: DelegatesTo
and PrototypedFrom.5

4.1 DelegatesTo
The signature of the DelegatesTo initializer is:

def __init__(self, delegate, prefix='',
listenable=True, **metadata)

The delegate parameter is a string that specifies the name of an
attribute on the same object, which refers to the object whose
attribute is deferred to; it is usually an Instance trait. The value of
the delegating attribute changes whenever:

5 Both of these class es inherit from the Delegate class. Explicit use of Delegate is
deprecated, as its name and default behavior (prototyping) are incongruous.

14-Aug-2008 35

Traits User Manual

• The value of the appropriate attribute on the delegate object
changes.

• The object referenced by the trait named in the delegate
parameter changes.

• The delegating attribute is explicitly changed.

Changes to the delegating attribute are propagated to the delegate
object’s attribute.

The prefix and listenable parameters to the initializer function
specify additional information about how to do the delegation.

If prefix is the empty string or omitted, the delegation is to an
attribute of the delegate object with the same name as the trait
defined by the DelegatesTo object. Consider the following example:

delegate.py --- Example of trait delegation
from enthought.traits.api \
 import DelegatesTo, HasTraits, Instance, Str

class Parent(HasTraits):
 first_name = Str
 last_name = Str

class Child(HasTraits):
 first_name = Str
 last_name = DelegatesTo('father')
 father = Instance(Parent)
 mother = Instance(Parent)
"""
>>> tony = Parent(first_name='Anthony', last_name='Jones')
>>> alice = Parent(first_name='Alice', last_name='Smith')
>>> sally = Child(first_name='Sally', father=tony, mother=alice)
>>> print sally.last_name
Jones
>>> sally.last_name = 'Cooper' # Updates delegatee
>>> print tony.last_name
Cooper
>>> sally.last_name = sally.mother # ERR: string expected
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\src\trunk\enthought\traits\trait_handlers.py", line
163, in error
 raise TraitError, (object, name, self.info(), value)
enthought.traits.trait_errors.TraitError: The 'last_name' trait of
a Child instance must be a value of type 'str', but a value of
<__main__.Parent object at 0x009DD6F0> was specified.
"""

A Child object delegates its last_name attribute value to its father
object’s last_name attribute. Because the prefix parameter was not

36 14-Aug-2008

Traits User Manual

specified in the Delegate initializer, the attribute name on the
delegatee is the same as the original attribute name. Thus, the
last_name of a Child is the same as the last_name of its father.
When either the last_name of the Child or the last_name of the
father is changed, both attributes reflect the new value.

4.2 PrototypedFrom
The signature of the PrototypedFrom initializer function is:

def __init__(self, prototype, prefix='',
listenable=True, **metadata)

The prototype parameter is a string that specifies the name of an
attribute on the same object, which refers to the object whose
attribute is prototyped; it is usually an Instance trait. The
prototyped attribute behaves similarly to a delegated attribute,
until it is explicitly changed; from that point forward, the
prototyped attribute changes independently from its prototype.

The prefix and listenable parameters to the initializer function
specify additional information about how to do the prototyping.

4.3 Keyword Parameters
The prefix and listenable parameters of the DelegatesTo and
PrototypedFrom initializer functions behave similarly for both
classes.

4.3.1 Prefix Keyword
When the prefix parameter is a non-empty string, the rule for
performing trait attribute look-up in the deferred-to object is
modified, with the modification depending on the format of the
prefix string:

• If prefix is a valid Python attribute name, then the original
attribute name is replaced by prefix when looking up the
deferred-to attribute.

14-Aug-2008 37

Traits User Manual

• If prefix ends with an asterisk ('*'), and is longer than one
character, then prefix, minus the trailing asterisk, is added to the
front of the original attribute name when looking up the object
attribute.

• If prefix is equal to a single asterisk ('*'), the value of the object
class’s __prefix__ attribute is added to the front of the original
attribute name when looking up the object attribute.

Each of these three possibilities is illustrated in the following
example, using PrototypedFrom:

prototype_prefix.py --- Examples of PrototypedFrom()
prefix parameter
from enthought.traits.api import \
 PrototypedFrom, Float, HasTraits, Instance, Str

class Parent (HasTraits):
 first_name = Str
 family_name = ''
 favorite_first_name = Str
 child_allowance = Float(1.00)
class Child (HasTraits):
 __prefix__ = 'child_'
 first_name = PrototypedFrom('mother', 'favorite_*')
 last_name = PrototypedFrom('father', 'family_name')
 allowance = PrototypedFrom('father', '*')
 father = Instance(Parent)
 mother = Instance(Parent)

"""
>>> fred = Parent(first_name = 'Fred', family_name = 'Lopez', \
... favorite_first_name = 'Diego', child_allowance = 5.0)
>>> maria = Parent(first_name = 'Maria', family_name =
'Gonzalez',\
... favorite_first_name = 'Tomas', child_allowance = 10.0)
>>> nino = Child(father=fred, mother=maria)
>>> print '%s %s gets $%.2f for allowance' %
(nino.first_name, \ ... nino.last_name, nino.allowance)
Tomas Lopez gets $5.00 for allowance
"""

In this example, instances of the Child class have three prototyped
trait attributes:

• first_name, which prototypes from the favorite_first_name
attribute of its mother object.

• last_name, which prototyped from the family_name attribute
of its father object.

• allowance, which prototypes from the child_allowance
attribute of its father object.

38 14-Aug-2008

Traits User Manual

4.3.2 Listenable Keyword
By default, you can attach listeners to deferred trait attributes, just
as you can attach listeners to most other trait attributes, as
described in the following section. However, implementing the
notifications correctly requires hooking up complicated listeners
under the covers. Hooking up these listeners can be rather more
expensive than hooking up other listeners. Since a common use
case of deferring is to have a large number of deferred attributes for
static object hierarchies, this feature can be turned off by setting
listenable=False in order to speed up instantiation.

4.4 Notification with Deferring
While two trait attributes are linked by a deferring relationship
(either delegation, or prototyping before the link is broken),
notifications for changes to those attributes are linked as well.
When the value of a deferred-to attribute changes, notification is
sent to any handlers on the deferring object, as well as on the
deferred-to object. This behavior is new in Traits version 3.0. In
previous versions, only handlers for the deferred-to object (the
object directly changed) were notified. This behavior is shown in
the following example:

deferring_notification.py –- Example of notification with
deferring
from enthought.traits.api \
 import HasTraits, Instance, PrototypedFrom, Str

class Parent (HasTraits):

 first_name = Str
 last_name = Str

 def _last_name_changed(self, new):
 print "Parent's last name changed to %s." % new

class Child (HasTraits):

 father = Instance(Parent)
 first_name = Str
 last_name = PrototypedFrom('father')

 def _last_name_changed(self, new):
 print "Child's last name changed to %s." % new

14-Aug-2008 39

Traits User Manual

"""
>>> dad = Parent(first_name='William', last_name='Chase')
Parent's last name changed to Chase.
>>> son = Child(first_name='John', father=dad)
Child's last name changed to Chase.
>>> dad.last_name='Jones'
Parent's last name changed to Jones.
Child's last name changed to Jones.
>>> son.last_name='Thomas'
Child's last name changed to Thomas.
>>> dad.last_name='Riley'
Parent's last name changed to Riley.
>>> del son.last_name
Child's last name changed to Riley.
>>> dad.last_name='Simmons'
Parent's last name changed to Simmons.
Child's last name changed to Simmons.
"""

Initially, changing the last name of the father triggers notification
on both the father and the son. Explicitly setting the son’s last name
breaks the deferring link to the father; therefore changing the
father’s last name does not notify the son. When the son reverts to
using the father’s last name (by deleting the explicit value), changes
to the father’s last name again affect and notify the son.

40 14-Aug-2008

5 Custom Traits
The predefined traits such as those described in Section 2.1 are
handy shortcuts for commonly used types. However, the Traits
package also provides facilities for defining complex or customized
traits:

• Subclassing of traits
• The Trait() factory function
• Predefined or custom trait handlers

5.1 Trait Subclassing
Starting with Traits version 3.0, most predefined traits are defined
as subclasses of enthought.traits.trait_handlers.TraitType. As a
result, you can subclass one of these traits, or TraitType, to derive
new traits. Refer to the Traits API Reference to see whether a
particular predefined trait derives from TraitType.

Here’s an example of subclassing a predefined trait class:

trait_subclass.py –- Example of subclassing a trait class
from enthought.traits.api import BaseInt

class OddInt (BaseInt):

 # Define the default value
 default_value = 1

 # Describe the trait type
 info_text = 'an odd integer'

 def validate (self, object, name, value):
 value = super(OddInt, self).validate(object, name, value)
 if (value % 2) == 1:
 return value

 self.error(object, name, value)

The OddInt class defines a trait that must be an odd integer. It
derives from BaseInt, rather than Int, as you might initially expect.
BaseInt and Int are exactly the same, except that Int has a
fast_validate attribute, which causes it to quickly check types at the

14-Aug-2008 41

Traits User Manual

C level, not go through the expense of executing the general
validate() method.6

As a subclass of BaseInt, OddInt can reuse and change any part of
the BaseInt class behavior that it needs to. In this case, it reuses the
BaseInt class’s validate() method, via the call to super() in the
OddInt validate() method. Further, OddInt is related to BaseInt,
which can be useful as documentation, and in programming.

You can use the subclassing strategy to define either a trait type or a
trait property, depending on the specific methods and class
constants that you define. A trait type uses a validate() method,
while a trait property uses get() and set() methods.

5.1.1 Defining a Trait Type
The members that are specific to a trait type subclass are:

• validate() method
• post_setattr() method
• default_value attribute or get_default_value() method

Of these, only the validate() method must be overridden in trait
type subclasses.

A trait type uses a validate() method to determine the validity of
values assigned to the trait. Optionally, it can define a post_setattr()
method, which performs additional processing after a value has
been validated and assigned.

The signatures of these methods are:

validate (self, object, name, value)
post_setattr (self, object, name, value)
The parameters of these methods are:

• object—The object whose trait attribute whose value is being
assigned.

• name—The name of the trait attribute whose value is being
assigned.

• value—The value being assigned.

6 All of the basic predefined traits (such as Float and Str) have a BaseType version that
does not have the fast_validate attribute.

42 14-Aug-2008

Traits User Manual

The validate() method returns either the original value or any
suitably coerced or adapted value that is legal for the trait. If the
value is not legal, and cannot be coerced or adapted to be legal, the
method must either raise a TraitError, or calls the error() method to
raise a TraitError on its behalf.

The subclass can define a default value either as a constant or as a
computed value. To use a constant, set the class-level default_value
attribute. To compute the default value, override the TraitType
class’s get_default_value() method.

5.1.2 Defining a Trait Property
A trait property uses get() and set() methods to interact with the
value of the trait. If a TraitType subclass contains a get() method or
a set() method, any definition it might have for validate() is
ignored.

The signatures of these methods are:

get(self, object, name)
set(self, object, name, value)
In these signatures, the parameters are:

• object—The object that the property applies to.
• name—The name of the trait property attribute on the object.
• value—The value being assigned to the property.

If only a get() method is defined, the property behaves as read-
only. If only a set() method is defined, the property behaves as
write-only.

The get() method returns the value of the name property for the
specified object. The set() method does not return a value, but will
raise a TraitError if the specified value is not valid, and cannot be
coerced or adapted to a valid value.

5.1.3 Other TraitType Members
The following members can be specified for either a trait type or a
trait property:

14-Aug-2008 43

Traits User Manual

• info_text attribute or info() method
• init() method
• create_editor() method

A trait must have an information string that describes the values
accepted by the trait type (for example ‘an odd integer’). Similarly
to the default value, the subclass’s information string can be either
a constant string or a computed string. To use a constant, set the
class-level info_text attribute. To compute the info string, override
the TraitType class’s info() method, which takes no parameters.

If there is type-specific initialization that must be performed when
the trait type is created, you can override the init() method. This
method is automatically called from the __init__() method of the
TraitType class.

If you want to specify a default Traits UI editor for the new trait
type, you can override the create_editor() method. This method has
no parameters, and returns the default trait editor to use for any
instances of the type.

For complete details on the members that can be overridden, refer
to the Traits API Reference sections on the TraitType and
BaseTraitHandler classes.

5.2 The Trait() Factory Function
The Trait() function is a generic factory for trait definitions. It has
many forms, many of which are redundant with the predefined
shortcut traits. For example, the simplest form Trait(default_value),
is equivalent to the functions for simple types described in Section
2.1.1, “Predefined Traits for Simple Types”. For the full variety of
forms of the Trait() function, refer to the Traits API Reference.

The most general form of the Trait() function is:

Trait(default_value, {type | constant_value |
 dictionary | class |
 function | trait_handler |
 trait }+)
The notation { | | }+ means a list of one or more of any of the
items listed between the braces. Thus, this form of the function
consists of a default value, followed by one or more of several

44 14-Aug-2008

Traits User Manual

possible items. A trait defined with multiple items is called a
compound trait. When more than one item is specified, a trait value
is considered valid if it meets the criteria of at least one of the items
in the list.

The following is an example of a compound trait with multiple
criteria.

compound.py -- Example of multiple criteria in a trait
definition
from enthought.traits.api import HasTraits, Trait, Range

class Die (HasTraits):

 # Define a compound trait definition:
 value = Trait(1, Range(1, 6),
 'one', 'two', 'three', 'four', 'five', 'six')

The Die class has a value trait, which has a default value of 1, and
can have any of the following values:

• An integer in the range of 1 to 6
• One of the following strings: 'one', 'two', 'three', 'four', 'five', 'six'

5.2.1 Trait () Parameters
The items listed as possible arguments to the Trait() function merit
some further explanation.

• type―See Section 5.2.1.1, “Type”.
• constant_value―See Section 5.2.1.2, “Constant Value”.
• dictionary―See Section 5.2.2, “Mapped Traits”.
• class―Specifies that the trait value must be an instance of the

specified class or one of its subclasses.
• function― A “validator” function that determines whether a

value being assigned to the attribute is a legal value. Traits
version 3.0 provides a more flexible approach, which is to
subclass an existing trait (or TraitType) and override the
validate() method.

• trait_handler―See Section 5.3, “Trait Handlers”.
• trait―Another trait object can be passed as a parameter; any

value that is valid for the specified trait is also valid for the trait
referencing it.

14-Aug-2008 45

Traits User Manual

5.2.1.1 Type
A type parameter to the Trait() function can be any of the following
standard Python types:

• str or StringType
• unicode or UnicodeType
• int or IntType
• long or LongType
• float or FloatType
• complex or ComplexType
• bool or BooleanType
• list or ListType
• tuple or TupleType
• dict or DictType
• FunctionType
• MethodType
• ClassType
• InstanceType
• TypeType
• NoneType

Specifying one of these types means that the trait value must be of
the corresponding Python type.

5.2.1.2 Constant Value
A constant_value parameter to the Trait() function can be any
constant belonging to one of the following standard Python types:

• NoneType
• int
• long
• float
• complex
• bool
• str
• unicode

Specifying a constant means that the trait can have the constant as a
valid value. Passing a list of constants to the Trait() function is
equivalent to using the Enum predefined trait.

46 14-Aug-2008

Traits User Manual

5.2.2 Mapped Traits
If the Trait() function is called with parameters that include one or
more dictionaries, then the resulting trait is called a mapped trait. In
practice, this means that the resulting object actually contains two
attributes:

• An attribute whose value is a key in the dictionary used to
define the trait.

• An attribute containing its corresponding value (i.e., the
mapped or shadow value). The name of the shadow attribute is
simply the base attribute name with an underscore appended.

Mapped traits can be used to allow a variety of user-friendly input
values to be mapped to a set of internal, program-friendly values.

The following examples illustrates mapped traits that map color
names to tuples representing red, green, blue, and transparency
values:

mapped.py --- Example of a mapped trait
from enthought.traits.api import HasTraits, Trait

standard_color = Trait ('black',
 {'black': (0.0, 0.0, 0.0, 1.0),
 'blue': (0.0, 0.0, 1.0, 1.0),
 'cyan': (0.0, 1.0, 1.0, 1.0),
 'green': (0.0, 1.0, 0.0, 1.0),
 'magenta': (1.0, 0.0, 1.0, 1.0),
 'orange': (0.8, 0.196, 0.196, 1.0),
 'purple': (0.69, 0.0, 1.0, 1.0),
 'red': (1.0, 0.0, 0.0, 1.0),
 'violet': (0.31, 0.184, 0.31, 1.0),
 'yellow': (1.0, 1.0, 0.0, 1.0),
 'white': (1.0, 1.0, 1.0, 1.0),
 'transparent': (1.0, 1.0, 1.0, 0.0) })

red_color = Trait ('red', standard_color)

class GraphicShape (HasTraits):
 line_color = standard_color
 fill_color = red_color

The GraphicShape class has two attributes: line_color and
fill_color. These attributes are defined in terms of the
standard_color trait, which uses a dictionary. The standard_color
trait is a mapped trait, which means that each GraphicShape
instance has two shadow attributes: line_color_ and fill_color_.
Any time a new value is assigned to either line_color or fill_color,

14-Aug-2008 47

Traits User Manual

the corresponding shadow attribute is updated with the value in
the dictionary corresponding to the value assigned. For example:

>>> import mapped
>>> my_shape1 = mapped.GraphicShape()
>>> print my_shape1.line_color, my_shape1.fill_color
black red
>>> print my_shape1.line_color_, my_shape1.fill_color_
(0.0, 0.0, 0.0, 1.0) (1.0, 0.0, 0.0, 1.0)
>>> my_shape2 = mapped.GraphicShape()
>>> my_shape2.line_color = 'blue'
>>> my_shape2.fill_color = 'green'
>>> print my_shape2.line_color, my_shape2.fill_color
blue green
>>> print my_shape2.line_color_, my_shape2.fill_color_
(0.0, 0.0, 1.0, 1.0) (0.0, 1.0, 0.0, 1.0)

This example shows how a mapped trait can be used to create a
user-friendly attribute (such as line_color) and a corresponding
program-friendly shadow attribute (such as line_color_). The
shadow attribute is program-friendly because it is usually in a form
that can be directly used by program logic.

There are a few other points to keep in mind when creating a
mapped trait:

• If not all values passed to the Trait() function are dictionaries,
the non-dictionary values are copied directly to the shadow
attribute (i.e., the mapping used is the identity mapping).

• Assigning directly to a shadow attribute (the attribute with the
trailing underscore in the name) is not allowed, and raises a
TraitError.

The concept of a mapped trait extends beyond traits defined via a
dictionary. Any trait that has a shadow value is a mapped trait. For
example, for the Expression trait, the assigned value must be a
valid Python expression, and the shadow value is the compiled
form of the expression.

5.3 Trait Handlers
In some cases, you may want to define a customized trait that is
unrelated to any predefined trait behavior, or that is related to a
predefined trait that happens to not be derived from TraitType. The
option for such cases is to use a trait handler, either a predefined
one or a custom one that you write.

48 14-Aug-2008

Traits User Manual

A trait handler is an instance of the
enthought.traits.trait_handlers.TraitHandler class, or of a subclass,
whose task is to verify the correctness of values assigned to object
traits. When a value is assigned to an object trait that has a trait
handler, the trait handler’s validate() method checks the value, and
assigns that value or a computed value, or raises a TraitError if the
assigned value is not valid. Both TraitHandler and TraitType
derive from BaseTraitHandler; TraitHandler has a more limited
interface.

The Traits package provides a number of predefined TraitHandler
subclasses. A few of the predefined trait handler classes are
described in the following sections. These sections also demonstrate
how to define a trait using a trait handler and the Trait() factory
function. For a complete list and descriptions of predefined
TraitHandler subclasses, refer to the Traits API Reference, in the
section on the enthought.traits.trait_handlers module.

5.3.1 TraitPrefixList
The TraitPrefixList handler accepts not only a specified set of
strings as values, but also any unique prefix substring of those
values. The value assigned to the trait attribute is the full string that
the substring matches.

For example:

>>> from enthought.traits.api import HasTraits, Trait
>>> from enthought.traits.api import TraitPrefixList
>>> class Alien(HasTraits):
... heads = Trait('one', TraitPrefixList(['one','two','three']))
...
>>> alf = Alien()
>>> alf.heads = 'o'
>>> print alf.heads
one
>>> alf.heads = 'tw'
>>> print alf.heads
two
>>> alf.heads = 't' # Error, not a unique prefix
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "c:\wrk\src\lib\enthought\traits\trait_handlers.py", line
601, in validate
 self.error(object, name, self.repr(value))
 File "c:\wrk\src\lib\enthought\traits\trait_handlers.py", line
90, in error

14-Aug-2008 49

Traits User Manual

 raise TraitError, (object, name, self.info(), value)
enthought.traits.trait_errors.TraitError: The 'heads' trait of an
Alien instance must be 'one' or 'two' or 'three' (or any unique
prefix), but a value of 't' was specified.

5.3.2 TraitPrefixMap
The TraitPrefixMap handler combines the TraitPrefixList with
mapped traits. Its constructor takes a parameter that is a dictionary
whose keys are strings. A string is a valid value if it is a unique
prefix for a key in the dictionary. The value assigned is the
dictionary value corresponding to the matched key.

The following example uses TraitPrefixMap to define a Boolean
trait that accepts any prefix of 'true', 'yes', 'false', or 'no', and maps
them to 1 or 0.

traitprefixmap.py --- Example of using the TraitPrefixMap
handler
from enthought.traits.api import Trait, TraitPrefixMap

boolean_map = Trait('true', TraitPrefixMap({
 'true': 1,
 'yes': 1,
 'false': 0,
 'no': 0 }))

5.4 Custom Trait Handlers
If you need a trait that cannot be defined using a predefined trait
handler class, you can create your own subclass of TraitHandler.
The constructor (i.e., __init__() method) for your TraitHandler
subclass can accept whatever additional information, if any, is
needed to completely specify the trait. The constructor does not
need to call the TraitHandler base class’s constructor.

The only method that a custom trait handler must implement is
validate(). Refer to the Traits API Reference for details about this
function.

50 14-Aug-2008

Traits User Manual

5.4.1 Example Custom Trait Handler
The following example defines the OddInt trait (also implemented
as a trait type in Section 5.1.1) using a TraitHandler subclass.

custom_traithandler.py --- Example of a custom TraitHandler
import types
from enthought.traits.api import TraitHandler

class TraitOddInteger(TraitHandler):
 def validate(self, object, name, value):
 if ((type(value) is types.IntType) and
 (value > 0) and ((value % 2) == 1)):
 return value
 self.error(object, name, value)

 def info(self):
 return 'a positive odd integer'

An application could use this new trait handler to define traits such
as the following:

use_custom_th.py --- Example of using a custom TraitHandler
from enthought.traits.api import HasTraits, Trait, TraitRange
from custom_traithandler import TraitOddInteger

class AnOddClass(HasTraits):
 oddball = Trait(1, TraitOddInteger())
 very_odd = Trait(-1, TraitOddInteger(),
 TraitRange(-10, -1))

The following example demonstrates why the info() method
returns a phrase rather than a complete sentence:

>>> from use_custom_th import AnOddClass
>>> odd_stuff = AnOddClass()
>>> odd_stuff.very_odd = 0
Traceback (most recent call last):
 File "test.py", line 25, in ?
 odd_stuff.very_odd = 0
 File "C:\wrk\src\lib\enthought\traits\traits.py", line 1119, in
validate
 raise TraitError, excp
traits.traits.TraitError: The 'very_odd' trait of a AnOddClass
instance must be a positive odd integer or an integer in the range
from -10 to -1, but a value of 0 was specified.

Note the emphasized result returned by the info() method, which is
embedded in the exception generated by the invalid assignment.

14-Aug-2008 51

6 Advanced Topics
The preceding sections provide enough information for you to use
traits for manifestly-typed attributes, with initialization and
validation. This section describes the advanced features of the
Traits package

6.1 Initialization and Validation
Revisited

The following sections present advanced topics related to the
initialization and validation features of the Traits package.

• Dynamic initialization
• Overriding default values
• Reusing trait definitions
• Trait attribute definition strategies
• Type-checked methods

6.1.1 Dynamic Initialization
When you define trait attributes using predefined traits, the Trait()
factory function or trait handlers, you typically specify their default
values statically. You can also define a method that dynamically
initializes a trait attribute the first time that the attribute value is
accessed. To do this, you define a method on the same class as the
trait attribute, with the following signature:

 _name_default(self)
This method initializes the name trait attribute, returning its initial
value. The method overrides any default value specified in the trait
definition.

It is also possible to define a dynamic method for the default value
in a trait type subclass (get_default_value()). However, however,
using a _name_default() method avoids the overhead of subclassing
a trait.

14-Aug-2008 52

Traits User Manual

6.1.2 Overriding Default Values in a
Subclass

Often, a subclass must override a trait attribute in a parent class by
providing a different default value. You can specify a new default
value without completely re-specifying the trait definition for the
attribute. For example:

override_default.py -- Example of overriding a default value for
a trait attribute in a subclass
from enthought.traits.api import HasTraits, Range, Str

class Employee(HasTraits):
 name = Str
 salary_grade = Range(value=1, low=1, high=10)

class Manager(Employee):
 salary_grade = 5

In this example, the salary_grade of the Employee class is a range
from 1 to 10, with a default value of 1. In the Manager subclass, the
default value of salary_grade is 5, but it is still a range as defined in
the Employee class.

6.1.3 Reusing Trait Definitions
As mentioned in Section 2, “Defining Traits: Initialization and
Validation”, in most cases, traits are defined in-line in attribute
definitions, but they can also be defined independently. A trait
definition only describes the characteristics of a trait, and not the
current value of a trait attribute, so it can be used in the definition
of any number of attributes. For example:

trait_reuse.py --- Example of reusing trait definitions
from enthought.traits.api import HasTraits, Range

coefficient = Range(-1.0, 1.0, 0.0))

class quadratic(HasTraits):
 c2 = coefficient
 c1 = coefficient
 c0 = coefficient
 x = Range(-100.0, 100.0, 0.0)

In this example, a trait named coefficient is defined externally to
the class quadratic, which references coefficient in the definitions
of its trait attributes c2, c1, and c0. Each of these attributes has a

14-Aug-2008 53

Traits User Manual

unique value, but they all use the same trait definition to determine
whether a value assigned to them is valid.

6.1.4 Trait Attribute Definition Strategies
In the preceding examples in this guide, all trait attribute
definitions have bound a single object attribute to a specified trait
definition. This is known as explicit trait attribute definition. The
Traits package supports other strategies for defining trait attributes.
You can associate a category of attributes with a particular trait
definition, using the trait attribute name wildcard. You can also
dynamically create trait attributes that are specific to an instance,
using the add_trait() method, rather than defined on a class. These
strategies are described in the following sections.

6.1.4.1 Trait Attribute Name Wildcard
The Traits package enables you to define a category of trait
attributes associated with a particular trait definition, by including
an underscore ('_') as a wildcard at the end of a trait attribute name.
For example:

temp_wildcard.py --- Example of using a wildcard with a Trait
attribute name
from enthought.traits.api import Any, HasTraits

class Person(HasTraits):
 temp_ = Any

This example defines a class Person, with a category of attributes
that have names beginning with temp, and that are defined by the
Any trait. Thus, any part of the program that uses a Person instance
can reference attributes such as tempCount, temp_name, or
temp_whatever, without having to explicitly declare these trait
attributes. Each such attribute has None as the initial value and
allows assignment of any value (because it is based on the Any
trait).

You can even give all object attributes a default trait definition, by
specifying only the wildcard character for the attribute name:

54 14-Aug-2008

Traits User Manual

all_wildcard.py --- Example of trait attribute wildcard rules
from enthought.traits.api import Any, HasTraits, Int, Str

class Person (HasTraits):

 # Normal, explicitly defined trait:
 name = Str

 # By default, let all traits have any value:
 _ = Any

 # Except for this one, which must be an Int:
 age = Int

"""
>>> bill = Person()
>>> # These assignments should all work:
>>> bill.name = 'William'
>>> bill.address = '121 Drury Lane'
>>> bill.zip_code = 55212
>>> bill.age = 49
>>> # This should generate an error (must be an Int):
>>> bill.age = 'middle age'
Traceback (most recent call last):
 File "all_wildcard.py", line 33, in <module>
 bill.age = 'middle age'
 File "c:\wrk\src\lib\enthought\traits\\trait_handlers.py", line
163, in error
 raise TraitError, (object, name, self.info(), value)
TraitError: The 'age' trait of a Person instance must be an
integer, but a value of middle age was specified.

In this case, all Person instance attributes can be created on the fly
and are defined by the Any trait.

6.1.4.1.1 Wildcard Rules

When using wildcard characters in trait attribute names, the
following rules are used to determine what trait definition governs
an attribute:

1. If an attribute name exactly matches a name without a wildcard
character, that definition applies.

2. Otherwise, if an attribute name matches one or more names
with wildcard characters, the definition with the longest name
applies.

Note that all possible attribute names are covered by one of these
two rules. The base HasTraits class implicitly contains the attribute

14-Aug-2008 55

Traits User Manual

definition _ = Python. This rule guarantees that, by default, all
attributes have standard Python language semantics.

These rules are demonstrated by the following example:

wildcard_rules.py --- Example of trait attribute wildcard rules
from enthought.traits.api import Any, HasTraits, Int, Python

class Person(HasTraits):
 temp_count = Int(-1)
 temp_ = Any
 _ = Python

In this example, the Person class has a temp_count attribute, which
must be an integer and which has an initial value of -1. Any other
attribute with a name starting with ‘temp’ has an initial value of
None and allows any value to be assigned. All other object
attributes behave like normal Python attributes (i.e., they allow any
value to be assigned, but they must have a value assigned to them
before their first reference).

6.1.4.1.2 Disallow Object

The singleton object Disallow can be used with wildcards to
disallow all attributes that are not explicitly defined. For example:

disallow.py --- Example of using Disallow with wildcards
from enthought.traits.api import \
 Disallow, Float, HasTraits, Int, Str

class Person (HasTraits):
 name = Str
 age = Int
 weight = Float
 _ = Disallow

In this example, a Person instance has three trait attributes:

• name—Must be a string; its initial value is ''.
• age—Must be an integer; its initial value is 0.
• weight—Must be a float; its initial value is 0.0.

All other object attributes are explicitly disallowed. That is, any
attempt to read or set any object attribute other than name, age, or
weight causes an exception.

56 14-Aug-2008

Traits User Manual

6.1.4.1.3 HasTraits Subclasses

Because the HasTraits class implicitly contains the attribute
definition _ = Python, subclasses of HasTraits by default have
very standard Python attribute behavior for any attribute not
explicitly defined as a trait attribute. However, the wildcard trait
attribute definition rules make it easy to create subclasses of
HasTraits with very non-standard attribute behavior. Two such
subclasses are predefined in the Traits package: HasStrictTraits and
HasPrivateTraits.

6.1.4.1.4 HasStrictTraits

This class guarantees that accessing any object attribute that does
not have an explicit or wildcard trait definition results in an
exception. This can be useful in cases where a more rigorous
software engineering approach is employed than is typical for
Python programs. It also helps prevent typos and spelling mistakes
in attribute names from going unnoticed; a misspelled attribute
name typically causes an exception. The definition of
HasStrictTraits is the following:
 class HasStrictTraits(HasTraits):
 _ = Disallow

HasStrictTraits can be used to create type-checked data structures,
as in the following example:
 class TreeNode(HasStrictTraits):
 left = This
 right = This
 value = Str

This example defines a TreeNode class that has three attributes:
left, right, and value. The left and right attributes can only be
references to other instances of TreeNode (or subclasses), while the
value attribute must be a string. Attempting to set other types of
values generates an exception, as does attempting to set an
attribute that is not one of the three defined attributes. In essence,
TreeNode behaves like a type-checked data structure.

6.1.4.1.5 HasPrivateTraits

This class is similar to HasStrictTraits, but allows attributes
beginning with '_' to have an initial value of None, and to not be
type-checked. This is useful in cases where a class needs private
attributes, which are not part of the class's public API, to keep track

14-Aug-2008 57

Traits User Manual

of internal object state. Such attributes do not need to be type-
checked because they are only manipulated by the (presumably
correct) methods of the class itself. The definition of
HasPrivateTraits is the following:
 class HasPrivateTraits(HasTraits):
 __ = Any
 _ = Disallow

These subclasses of HasTraits are provided as a convenience, and
their use is completely optional. However, they do illustrate how
easy it is to create subclasses with customized default attribute
behavior if desired.

6.1.4.2 Per-Object Trait Attributes
The Traits package allows you to define dynamic trait attributes
that are object-, rather than class-, specific. This is accomplished
using the add_trait() method of the HasTraits class:

object.add_trait(name, trait)
For example:

object_trait_attrs.py --- Example of per-object trait attributes
from enthought.traits.api import HasTraits, Range

class GUISlider (HasTraits):

 def __init__(self, eval=None, label='Value',
 trait=None, min=0.0, max=1.0,
 initial=None, **traits):
 HasTraits.__init__(self, **traits)
 if trait is None:
 if min > max:
 min, max = max, min
 if initial is None:
 initial = min
 elif not (min <= initial <= max):
 initial = [min, max][
 abs(initial - min) >
 abs(initial - max)]
 trait = Range(min, max, value = initial)
 self.add_trait(label, trait)

This example creates a GUISlider class, whose __init__() method
can accept a string label and either a trait definition or minimum,
maximum, and initial values. If no trait definition is specified, one
is constructed based on the max and min values. A trait attribute

58 14-Aug-2008

Traits User Manual

whose name is the value of label is added to the object, using the
trait definition (whether specified or constructed). Thus, the label
trait attribute on the GUISlider object is determined by the calling
code, and added in the __init__() method using add_trait().

You can require that add_trait() must be used in order to add
attributes to a class, by deriving the class from HasStrictTraits (see
Section 6.1.4.1.4). When a class inherits from HasStrictTraits, the
program cannot create a new attribute (either a trait attribute or a
regular attribute) simply by assigning to it, as is normally the case
in Python. In this case, add_trait() is the only way to create a new
attribute for the class outside of the class definition.

6.1.5 Type-Checked Methods
In addition type-checked attributes, the Traits package provides the
ability to create type-checked methods.

A type-checked method is created by writing a normal method
definition within a class, preceded by a method() signature function
call, as shown in the following example:

type_checked_methods.py --- Example of traits-based method type
checking
from enthought.traits.api import HasTraits, method, Tuple

Color = Tuple(int, int, int, int)

class Palette(HasTraits):

 method(Color, color1=Color, color2=Color)
 def blend (self, color1, color2):
 return ((color1[0] + color2[0]) / 2,
 (color1[1] + color2[1]) / 2,
 (color1[2] + color2[2]) / 2,
 (color1[3] + color2[3]) / 2)

 method(Color, Color, Color)
 def max (self, color1, color2):
 return (max(color1[0], color2[0]),
 max(color1[1], color2[1]),
 max(color1[2], color2[2]),
 max(color1[3], color2[3]))

In this example, Color is defined to be a trait that accepts tuples of
four integer values. The method() signature function appearing
before the definition of the blend() method ensures that the two
arguments to blend() both match the Color trait definition, as does

14-Aug-2008 59

Traits User Manual

the result returned by blend(). The method signature appearing
before the max() method does exactly the same thing, but uses
positional rather than keyword arguments.

Use of the method() signature function is optional. Methods not
preceded by a method() function have standard Python behavior
(i.e., no type-checking of arguments or results is performed). Also,
the method() function can be used in classes that do not subclass
from HasTraits, because the resulting method performs the type
checking directly. And finally, when the method() function is used,
it must directly precede the definition of the method whose type
signature it defines. (However, white space is allowed.) If it does
not, a TraitError is raised.

6.2 Interfaces
Starting in version 3.0, the Traits package supports declaring and
implementing interfaces. An interface is an abstract data type that
defines a set of attributes and methods that an object must have to
work in a given situation. The interface says nothing about what
the attributes or methods do, or how they do it; it just says that they
have to be there. Interfaces in Traits are similar to those in Java.
They can be used to declare a relationship among classes which
have similar behavior but do not have an inheritance relationship.
Like Traits in general, Traits interfaces don’t make anything
possible that is not already possible in Python, but they can make
relationships more explicit and enforced. Python programmers
routinely use implicit, informal interfaces (what’s known as “duck
typing”). Traits allows programmers to define explicit and formal
interfaces, so that programmers reading the code can more easily
understand what kinds of objects are actually intended to be used in
a given situation.

60 14-Aug-2008

Traits User Manual

6.2.1 Defining an Interface
To define an interface, create a subclass of Interface:

interface_definition.py –- Example of defining an interface
from enthought.traits.api import Interface

class IName(Interface):

 def get_name(self):
 """ Returns a string which is the name of an object. """

Interface classes serve primarily has documentation of the methods
and attributes that the interface defines. In this case, a class that
implements the IName interface must have a method named
get_name(), which takes no arguments and returns a string. Do not
include any implementation code in an interface declaration.
However, the Traits package does not actually check to ensure that
interfaces do not contain implementations.

By convention, interface names have a capital ‘I’ at the beginning of
the name.

6.2.2 Implementing an Interface
A class declares that it implements one or more interfaces using the
implements() function, which has the signature:

implements(interface, interface2 , … ,
interfaceN)

Interface names beyond the first one are optional. The call to
implements() must occur at class scope within the class definition.
For example:

interface_implementation.py –- Example of implementing an
interface
from enthought.traits.api import HasTraits, implements, Str
from interface_definition import IName

class Person(HasTraits):
 implements(IName)

 first_name = Str('John')
 last_name = Str('Doe')

14-Aug-2008 61

Traits User Manual

 # Implementation of the 'IName' interface:
 def get_name (self):
 """ Returns the name of an object. """
 return ('%s %s' % (self.first_name, self.last_name))

A class can contain at most one call to implements().

In version 3.0, you can specify whether the implements() function
verifies that the class calling it actually implements the interface
that it says it does. This is determined by the
CHECK_INTERFACES variable, which can take one of three
values:

• 0 (default): Does not check whether classes implement their
declared interfaces.

• 1: Verifies that classes implement the interfaces they say they
do, and logs a warning if they don't.

• 2: Verifies that classes implement the interfaces they say they
do, and raises an InterfaceError if they don't.

The CHECK_INTERFACES variable must be imported directly
from the enthought.traits.has_traits module:
import enthought.traits.has_traits
enthought.traits.has_traits.CHECK_INTERFACES = 1

6.2.3 Using Interfaces
You can use an interface at any place where you would normally
use a class name. The most common way to use interfaces is with
the Instance trait:

>>> from enthought.traits.api import HasTraits, Instance
>>> from interface_definition import IName
>>> class Apartment(HasTraits):
... renter = Instance(IName)
>>> from interface_implementation import Person
>>> william = Person(first_name=’William’, last_name=’Adams’)
>>> apt1 = Apartment(renter=william)
>>> print 'Renter is: ', apt1.renter.get_name()
Renter is: William Adams

Using an interface class with an Instance trait definition declares
that the trait accepts only values that implement the specified
interface. (If the assigned object does not implement the interface,
the Traits package may automatically substitute an adapter object
that implements the specified interface. See the following section
for information on adaptation.)

62 14-Aug-2008

Traits User Manual

6.3 Adaptation
Adaptation is the process of transforming an object that does not
implement a specific interface (or set of interfaces) into an object
that does. In Traits, this process is accomplished with adapters,
which are special classes whose purpose is to adapt objects from
one set of interfaces to another. Once adapter classes are defined,
they are implicitly instantiated whenever they are needed to fulfill
interface requirements. That is, if an Instance trait requires its
values to implement interface IFoo, and an object is assigned to it
which is of class Bar, which does not implement IFoo, then an
adapter from Bar to IFoo is instantiated (if such an adapter class
exists), and the adapter object is assigned to the trait. If necessary, a
“chain” of adapter objects might be created, in order to perform the
required adaptation.

6.3.1 Defining Adapters
The Traits package provides several mechanisms for defining
adapter classes:

• Subclassing Adapter
• Defining an adapter class without subclassing Adapter
• Declaring a class to be an adapter externally to the class

6.3.1.1 Subclassing Adapter
The Traits package provides an Adapter class as convenience. This
class streamlines the process of creating a new adapter class. It has
a standard constructor that does not normally need to be
overridden by subclasses. This constructor accepts one parameter,
which is the object to be adapted, and assigns that object to the
adaptee trait attribute.

As an adapter writer, the only members you need to add to a
subclass of Adapter are:

• A call to implements() declaring which interfaces the adapter
class implements on behalf of the object it is adapting.

• A trait attribute named adaptee that declares what type of
object it is an adapter for. Usually, this is an Instance trait.

14-Aug-2008 63

Traits User Manual

• Implementations of the interfaces declared in the implements()
call. Usually, these methods are implemented using appropriate
members on the adaptee object.

The following code example shows a definition of a simple adapter
class:

simple_adapter.py –- Example of adaptation using Adapter
from enthought.traits.api import Adapter, Instance, implements
from interface_definition import IName
from interface_implementation import Person

class PersonINameAdapter(Adapter):

 # Declare what interfaces this adapter implements for its
 # client:
 implements(IName)

 # Declare the type of client it supports:
 adaptee = Instance(Person)

 # Implement the 'IName' interface on behalf of its client:
 def get_name (self):
 return ('%s %s' % (self.adaptee.first_name,
 self.adaptee.last_name))

6.3.1.2 Creating an Adapter from Scratch
You can create an adapter class without subclassing Adapter. If so,
you must provide the same information and setup that are
implicitly provided by Adapter.

In particular, you must use the adapts() function instead of the
implements() function, and you must define a constructor that
corresponds to the constructor of Adapter. The adapts() function
defines the class that contains it as an adapter class, and declares
the set of interfaces that the class implements.

The signature of the adapts() function is:

adapts(adaptee_class, interface, interface2, … ,
interfacen)

This signature is very similar to that of implements(), but adds the
class being adapted as the first parameter. Interface names beyond
the first one are optional.

64 14-Aug-2008

Traits User Manual

The constructor for the adapter class must accept one parameter,
which is the object being adapted, and it must save this reference in
an attribute that can be used by implementation code.

The following code shows an example of implementing an adapter
without subclassing Adapter.

scratch_adapter.py – Example of writing an adapter from scratch
from enthought.traits.api import HasTraits, Instance, adapts
from interface_definition import IName
from interface_implementation import Person

class PersonINameAdapter (HasTraits):
 # Declare what interfaces this adapter implements,
 # and for what class:
 adapts(Person, IName)
 # Declare the type of client it supports:
 client = Instance(Person)

 # Implement the adapter's constructor:
 def __init__ (self, client):
 self.client = client

 # Implement the 'IName' interface on behalf of its client:
 def get_name (self):
 return ('%s %s' % (self.client.first_name,
 self.client.last_name))

6.3.1.3 Declaring a Class as an Adapter Externally
You can declare a class to be an adapter by calling the adapts()
function externally to the class definition. The class must provide
the same information and setup as the Adapter class, just as in the
case where adapts() is called within the class definition. That is, it
must provide a constructor that accepts the object being adapted as
a parameter, and it must implement the interfaces specified in the
call to adapts().

In this case, signature of the adapts() function is:

adapts(adapter_class, adaptee_class, interface,
interface2, … , interfacen)

As with implements() and the other form of adapts(), interface
names beyond the first one are optional.

The following code shows this use of the adapts() function.

external_adapter.py –- Example of declaring a class as an

14-Aug-2008 65

Traits User Manual

adapter externally to the class
from enthought.traits.api import adapts
from interface_definition import IName
from interface_implementation import Person

class AnotherPersonAdapter (object):

 # Implement the adapter's constructor:
 def __init__ (self, person):
 self.person = person

 # Implement the 'IName' interface on behalf of its client:
 def get_name (self):
 return ('%s %s' % (self.person.first_name,
 self.person.last_name))

adapts(AnotherPersonAdapter, Person, IName)

6.3.2 Using Adapters
You define adapter classes as described in the preceding sections,
but you do not explicitly create instances of these classes. The Traits
package automatically creates them whenever an object is assigned
to an interface Instance trait, and the object being assigned does not
implement the required interface. If an adapter class exists that can
adapt the specified object to the required interface, an instance of
the adapter class is created for the object, and is assigned as the
actual value of the Instance trait.

In some cases, no single adapter class exists that adapts the object
to the required interface, but a series of adapter classes exist that
together perform the required adaptation. In such cases, the
necessary set of adapter objects are created, and the “last” link in
the chain, the one that actually implements the required interface,
is assigned as the trait value. When a situation like this arises, the
adapted object assigned to the trait always contains the smallest set
of adapter objects needed to adapt the original object.

6.3.3 Controlling Adaptation
Adaptation normally happens automatically when needed, and
when appropriate adapter classes are available. However, the
Instance trait lets you control how adaptation is performed,

66 14-Aug-2008

Traits User Manual

through its adapt metadata attribute. The adapt metadata attribute
can have one of the following values:

• no—Adaptation is not allowed for this trait attribute.
• yes—Adaptation is allowed. If adaptation fails, an exception is

raised.
• default—Adaptation is allowed. If adaptation fails, the

default value for the trait is assigned instead.

The default value for the adapt metadata attribute is yes.

The following code is an example of an interface Instance trait
attribute that uses adapt metadata.

adapt_metadata.py – Example of using 'adapt' metadata
from enthought.traits.api import HasTraits, Instance
from interface_definition import IName

class Apartment(HasTraits):
 renter = Instance(IName, adapt='no')

Using this definition, any value assigned to renter must implement
the IName interface. Otherwise, an exception is raised.

6.4 Property Traits
The predefined Property() trait factory function defines a Traits-
based version of a Python property, with “getter” and “setter”
methods. This type of trait provides a powerful technique for
defining trait attributes whose values depend on the state of other
object attributes. In particular, this can be very useful for creating
synthetic trait attributes which are editable or displayable in a Trait
UI view.

6.4.1 Property Factory Function
The Property() function has the following signature:

Property(fget=None, fset=None, fvalidate=None,
 force=False, handler=None, trait=None,
 **metadata)
All parameters are optional, including the fget “getter” and fset
“setter” methods. If no parameters are specified, then the trait looks

14-Aug-2008 67

Traits User Manual

for and uses methods on the same class as the attribute that the trait
is assigned to, with names of the form _get_name and _set_name,
where name is the name of the trait attribute.

If you specify a trait as either the fget parameter or the trait
parameter, that trait’s handler supersedes the handler argument, if
any. Because the fget parameter accepts either a method or a trait,
you can define a Property trait by simply passing another trait. For
example:
source = Property(Code)

This line defines a trait whose value is validated by the Code trait,
and whose getter and setter methods are defined elsewhere on the
same class.

If a Property trait has only a getter function, it acts as read-only; if it
has only a setter function, it acts as write-only. It can lack a function
due to two situations:

• A function with the appropriate name is not defined on the
class.

• The force option is True, (which requires the Property() factory
function to ignore functions on the class) and one of the access
functions was not specified in the arguments.

6.4.2 Caching a Property Value
In some cases, the cost of computing the value of a property trait
attribute may be very high. In such cases, it is a good idea to cache
the most recently computed value, and to return it as the property
value without recomputing it. When a change occurs in one of the
attributes on which the cached value depends, the cache should be
cleared, and the property value should be recomputed the next
time its value is requested.

One strategy to accomplish caching would be to use a private
attribute for the cached value, and notification listener methods on
the attributes that are depended on. However, to simplify the
situation, Property traits support a @cached_property decorator
and depends_on metadata. Use @cached_property to indicate that
a getter method’s return value should be cached. Use depends_on
to indicate the other attributes that the property depends on. For
example:

68 14-Aug-2008

Traits User Manual

cached_prop.py – Example of @cached_property decorator
from enthought.traits.api import HasPrivateTraits, List, Int,\
 Property, cached_property

class TestScores (HasPrivateTraits):

 scores = List(Int)
 average = Property(depends_on = 'scores')

 @cached_property
 def _get_average (self):
 s = self.scores
 return (float(reduce(lambda n1, n2: n1 + n2, s, 0))
 / len(s))

The @cached_property decorator takes no arguments. Place it on
the line preceding the property’s getter method.

The depends_on metadata attribute accepts extended trait
references, using the same syntax as the on_trait_change() method’s
name parameter, described in Section 3.1.2. As a result, it can take
values that specify attributes on referenced objects, multiple
attributes, or attributes that are selected based on their metadata
attributes.

6.5 Persistence
In version 3.0, the Traits package provides __getstate__() and
__setstate__() methods on HasTraits, to implement traits-aware
policies for serialization and deserialization (i.e., pickling and
unpickling).

6.5.1 Pickling HasTraits Objects
Often, you may wish to control for a HasTraits subclass which
parts of an instance’s state are saved, and which are discarded. A
typical approach is to define a __getstate__() method that copies the
object’s __dict__ attribute, and deletes those items that should not
be saved. This approach works, but can have drawbacks, especially
related to inheritance.

The HasTraits __getstate__() method uses a more generic approach,
which developers can customize through the use of traits metadata
attributes, often without needing to override or define a

14-Aug-2008 69

Traits User Manual

__getstate__() method in their application classes. In particular, the
HasTraits __getstate__() method discards the values of all trait
attributes that have the transient metadata attribute set to True,
and saves all other trait attributes. So, to mark which trait values
should not be saved, you set transient to True in the metadata for
those trait attributes. The benefits of this approach are that you do
not need to override __getstate__(), and that the metadata helps
document the pickling behavior of the class.

For example:

transient_metadata.py – Example of using 'transient' metadata
from enthought.traits.api import HasTraits, File, Any

class DataBase (HasTraits):
 # The name of the data base file:
 file_name = File

 # The open file handle used to access the data base:
 file = Any(transient = True)

In this example, the DataBase class’s file trait is marked as transient
because it normally contains an open file handle used to access a
data base. Since file handles typically cannot be pickled and
restored, the file handle should not be saved as part of the object's
persistent state. Normally, the file handle would be re-opened by
application code after the object has been restored from its
persisted state.

6.5.2 Predefined Transient Traits
A number of the predefined traits in the Traits package are defined
with transient set to True, so you do not need to explicitly mark
them. The automatically transient traits are:

• Constant
• Event
• Read-only and write-only Property traits (See Section 6.4.1,

“Property Factory Function”)
• Shadow attributes for mapped traits (See Section 5.2.2,

“Mapped Traits”)
• Private attributes of HasPrivateTraits subclasses (See Section

6.1.4.1.5, “HasPrivateTraits”)

70 14-Aug-2008

Traits User Manual

• Delegate traits that do not have a local value overriding the
delegation. Delegate traits with a local value are non-transient,
i.e., they are serialized. (See Section 4.1, “DelegatesTo”) You can
mark a Delegate trait as transient if you do not want its value to
ever be serialized.

6.5.3 Overriding __getstate__()
In general, try to avoid overriding __getstate__() in subclasses of
HasTraits. Instead, mark traits that should not be pickled with
transient = True metadata.

However, in cases where this strategy is insufficient, use the
following pattern to override __getstate__() to remove items that
should not be persisted:
def __getstate__ (self):
 state = super(XXX, self).__getstate__()

 for key in ['foo', 'bar']:
 if state.has_key(key):
 del state[key]

 return state

6.5.4 Unpickling HasTraits Objects
The __setstate__() method of HasTraits differs from the default
Python behavior in one important respect: it explicitly sets the
value of each attribute using the values from the state dictionary,
rather than simply storing or copying the entire state dictionary to
its __dict__ attribute. While slower, this strategy has the advantage
of generating trait change notifications for each attribute. These
notifications are important for classes that rely on them to ensure
that their internal object state remains consistent and up to date.

6.5.5 Overriding __setstate__()
You may wish to override the HasTraits __setstate__() method, for
example for classes that do not need to receive trait change
notifications, and where the overhead of explicitly setting each
attribute is undesirable. You can override __setstate__() to update

14-Aug-2008 71

Traits User Manual

the object’s __dict__ directly. However, in such cases, it is
important ensure that trait notifications are properly set up so that
later change notifications are handled. You can do this in two ways:

• Call the __setstate__() super method (for example, with an
empty state dictionary).

• Call the HasTraits class’s private _init_trait_listeners() method;
this method has no parameters and does not return a result.

6.6 Useful Methods on HasTraits
The HasTraits class defines a number of methods, which are
available to any class derived from it, i.e., any class that uses trait
attributes. This section provides examples of a sampling of these
methods. Refer to the Traits API Reference for a complete list of
HasTraits methods.

6.6.1 add_trait()
This method adds a trait attribute to an object dynamically, after
the object has been created. For more information, see Section
6.1.4.2, “Per-Object Trait Attributes”.

6.6.2 clone_traits()
This method copies trait attributes from one object to another. It
can copy specified attributes, all explicitly defined trait attributes,
or all explicitly and implicitly defined trait attributes on the source
object.

This method is useful if you want to allow a user to edit a clone of
an object, so that changes are made permanent only when the user
commits them. In such a case, you might clone an object and its
trait attributes; allow the user to modify the clone; and then re-
clone only the trait attributes back to the original object when the
user commits changes.

72 14-Aug-2008

Traits User Manual

6.6.3 set()
This takes a list of keyword-value pairs, and sets the trait attribute
corresponding to each keyword to the matching value. This
shorthand is useful when a number of trait attributes need to be set
on an object, or a trait attribute value needs to be set in a lambda
function. For example:
person.set(name='Bill', age=27)

The statement above is equivalent to the following:
person.name = 'Bill'
person.age = 27

6.6.4 add_class_trait()
The add_class_trait() method is a class method, while the preceding
HasTraits methods are instance methods. This method is very
similar to the add_trait() instance method. The difference is that
adding a trait attribute by using add_class_trait() is the same as
having declared the trait as part of the class definition. That is, any
trait attribute added using add_class_trait() is defined in every
subsequently-created instance of the class, and in any
subsequently-defined subclasses of the class. In contrast, the
add_trait() method adds the specified trait attribute only to the
object instance it is applied to.

In addition, if the name of the trait attribute ends with a '_', then a
new (or replacement) prefix rule is added to the class definition,
just as if the prefix rule had been specified statically in the class
definition. It is not possible to define new prefix rules using the
add_trait() method.

One of the main uses of the add_class_trait() method is to add trait
attribute definitions that could not be defined statically as part of
the body of the class definition. This occurs, for example, when two
classes with trait attributes are being defined and each class has a
trait attribute that should contain a reference to the other. For the
class that occurs first in lexical order, it is not possible to define the
trait attribute that references the other class, since the class it needs
to refer to has not yet been defined. This is illustrated in the
following example:

14-Aug-2008 73

Traits User Manual

circular_definition.py --- Non-working example of mutually-
referring classes
from enthought.traits.api import HasTraits, Trait

class Chicken(HasTraits):
 hatched_from = Trait(Egg)

class Egg(HasTraits):
 created_by = Trait(Chicken)

As it stands, this example will not run because the hatched_from
attribute references the Egg class, which has not yet been defined.
Reversing the definition order of the classes does not fix the
problem, because then the created_by trait references the Chicken
class, which has not yet been defined.

The problem can be solved using the add_class_trait() method, as
shown in the following code:

add_class_trait.py --- Example of mutually-referring classes
using add_class_trait()
from enthought.traits.api import HasTraits, Trait

class Chicken(HasTraits):
 pass

class Egg(HasTraits):
 created_by = Trait(Chicken)

Chicken.add_class_trait('hatched_from', Egg)

6.7 Performance Considerations of
Traits

Using traits can potentially impose a performance penalty on
attribute access over and above that of normal Python attributes.
For the most part, this penalty, if any, is small, because the core of
the Traits package is written in C, just like the Python interpreter.
In fact, for some common cases, subclasses of HasTraits can
actually have the same or better performance than old or new style
Python classes.

However, there are a couple of performance-related factors to keep
in mind when defining classes and attributes using traits:

• Whether a trait attribute defers its value through delegation or
prototyping

74 14-Aug-2008

Traits User Manual

• The complexity of a trait definition

If a trait attribute does not defer its value, the performance penalty
can be characterized as follows:

• Getting a value: No penalty (i.e., standard Python attribute
access speed or faster)

• Setting a value: Depends upon the complexity of the validation
tests performed by the trait definition. Many of the predefined
trait handlers defined in the Traits package support fast C-level
validation. For most of these, the cost of validation is usually
negligible. For other trait handlers, with Python-level validation
methods, the cost can be quite a bit higher.

If a trait attribute does defer its value, the cases to be considered
are:

• Getting the default value: Cost of following the deferral chain.
The chain is resolved at the C level, and is quite fast, but its cost
is linear with the number of deferral links that must be followed
to find the default value for the trait.

• Getting an explicitly assigned value for a prototype: No penalty
(i.e., standard Python attribute access speed or faster)

• Getting an explicitly assigned value for a delegate: Cost of
following the deferral chain.

• Setting: Cost of following the deferral chain plus the cost of per-
forming the validation of the new value. The preceding
discussions about deferral chain following and fast versus slow
validation apply here as well.

In a typical application scenario, where attributes are read more
often than they are written, and deferral is not used, the impact of
using traits is often minimal, because the only cost occurs when
attributes are assigned and validated.

The worst case scenario occurs when deferral is used heavily, either
for delegation, or for prototyping to provide attributes with default
values that are seldom changed. In this case, the cost of frequently
following deferral chains may impose a measurable performance
detriment on the application. Of course, this is offset by the
convenience and flexibility provided by the deferral model. As
with any powerful tool, it is best to understand its strengths and
weaknesses and apply that understanding in determining when
use of the tool is justified and appropriate.

14-Aug-2008 75

Traits User Manual

Index

A
adapt metadata, 67
adaptee attribute, 63
Adapter class, 63
adapters,

controlling adaptation, 66
creating from scratch, 64
declaring externally, 65
defining, 63
using, 66

adapts() function, 64, 65
add_class_trait() method, 73
add_trait() method, 58, 72
anytrait_changed() method, 30
array metadata, 17
attribute definition, 5

B
Boolean type, 7

C
cached_property decorator, 68
casting,

traits, 7
types, 8, 9

CBool trait, 7
Chaco, 3
class parameter to Trait(), 45
clone_traits() method, 72
coercing,

traits, 7
types, 7, 8

complex number type, 7
compound traits, 45
Constant trait, 10
constant_value parameter to

Trait(), 45, 46
create_editor() method, 44
custom,

traits, 41

D
default metadata, 17
default value,

method, 52
overriding in a subclass, 53

default_kind metadata, 17
default_value attribute, 42
deferral, 1, 35

notification with, 39
delegate,

metadata, 17
parameter to DelegatesTo

initializer, 35
DelegatesTo class, 35
delegation, 35
depends_on metadata, 68
desc metadata, 18
dictionary parameter to Trait(),

45
Disallow,

object , 56

76 14-Aug-2008

Traits User Manual

E
editor metadata, 18
Either trait, 10
enthought.traits.api, importing

from, 5
events, 33
examples,

adapt metadata, 67
Adapter class, 64
add_class_trait() method, 74
all features, 2
cached property, 69
coercing vs. casting, 8
custom trait handler, 51
definition, 61
delegation, 36
Disallow object, 56
dynamic, 22
events, 33
external, 65
from scratch, 65
handlers, 28
implementation, 61
list of values, 15
mapped traits, 47
metadata attributes, 19
metadata keywords, 19
minimal, 5
overriding default values, 53
per-object trait attributes, 58
prototype prefix, 38
static, 30
subclassing traits, 41
This trait, 14
Trait() function, 45
TraitPrefixList, 49
TraitPrefixMap, 50
transient metadata, 70
type-checking methods, 59
usage, 62

wildcards, 54, 55
with deferral, 39

explicit trait attribute definition,
54

extended trait names,
examples, 25
semantics, 24
syntax, 23

F
floating point number type, 7
function parameter to Trait(), 45

G
get_default_value() method, 42,

52
get() method, 43
getstate method, 69

H
handler classes,

custom, 50
HasPrivateTraits class, 57
HasStrictTraits class, 57
HasTraits,

methods, 72
HasTraits class,

deriving from, 5
pickling, 69
subclasses, predefined, 57
unpickling, 71

14-Aug-2008 77

Traits User Manual

I
implements() function, 61, 63
importing Traits names, 5
info_text attribute, 44
info() method, 44
init() method, 44
initialization, 1
initialization,

dynamic, 52
inner_traits metadata, 17
integer type,

long, 7
plain, 7

interfaces, 60
defining, 61
implementing, 61
using, 62

L
label metadata, 18
listenable parameter to initializer

methods, 39
long integer type, 7

M
mapped traits, 47
metadata,

accessing, 18
internal metadata attributes, 17
on traits, 16
recognized metadata attributes,

18
methods, type-checking, 59
multiple values, defining trait

with, 15

N
name parameter,

get() and set() methods, 43

notification handlers, 26
on_trait_change(), 23
validate() method, 42

name_changed() method, 30
name_default method, 52
name_fired() method, 30
new parameter to notification

handlers, 27
notification, 1

dynamic, 21, 26
special cases, 27
specially-named handlers, 30
static, 28
strategies, 21

O
object parameter,

get() and set() methods, 43
notification handlers, 26
validate() method, 42

old parameter to notification
handlers, 27

on_trait_change,
decorator, 29
method, 21
semantics, 29
syntax, 29

on_trait_event() method, 21

P
parent metadata, 17
performance of Traits, 74
persistence, 69
pickling HasTraits objects, 69
post_setattr() method, 42
predefined traits, 6
prefix,

metadata, 17

78 14-Aug-2008

Traits User Manual

parameter to initializer
methods, 37

Property,
function, 67

property value, caching, 68
prototype parameter to

PrototypesFrom initializer, 37
PrototypedFrom class, 37
prototyping, 35

example, 38

R
rich_compare metadata, 18

S
self trait, 14
set() method, 43, 73
setstate method, 69
shadow values, 47
simple types, 7
String,

type, 7
subclassing traits, 41

T
This trait, 14
trait,

definitions, reusing, 53
parameter to Trait(), 45

trait handler,
classes, 48
parameter to Trait(), 45

trait_type metadata, 17
trait_value metadata, 18
Trait() function, 44
TraitHandler class, 49
TraitPrefixList class, 49
TraitPrefixMap class, 50
TraitType class, 41
TraitValue class, 18
transient,

metadata, 18, 70
traits, predefined, 70

type,
metadata, 17
parameter to Trait(), 45, 46

type-checking methods, 59

U
Undefined object, 34
Unicode,

type, 7
unpickling HasTraits objects, 71
using Traits, 5

V
validate() method, 42
validation, 1, 5
value parameter,

get() and set() methods, 43
validate() method, 42

visualization, 1

W
wildcard,

rules, 55
trait attribute names, 54

14-Aug-2008 79

Traits User Manual

_
__getstate__() method, 69

overriding, 71
__setstate__() method, 69

overriding, 71
_anytrait_changed() method, 30

signatures, 32

_name_changed() method, 30
signatures, 31

_name_default method, 52
_name_fired() method, 30

@
@cached_property decorator, 68
@on_trait_change decorator, 29

80 14-Aug-2008

	1Introduction
	1.1What Are Traits?
	1.2Background

	2Defining Traits: Initialization and Validation
	2.1Predefined Traits
	2.1.1Predefined Traits for Simple Types
	2.1.1.1Trait Type Coercion
	2.1.1.2Trait Type Casting

	2.1.2Other Predefined Traits
	2.1.2.1This and self
	2.1.2.2List of Possible Values

	2.2Trait Metadata
	2.2.1Internal Metadata Attributes
	2.2.2Recognized Metadata Attributes
	2.2.3Accessing Metadata Attributes

	3Trait Notification
	3.1Dynamic Notification
	3.1.1Example of a Dynamic Notification Handler
	3.1.2The name Parameter
	3.1.2.1Syntax
	3.1.2.2Semantics

	3.1.3Notification Handler Signatures
	3.1.4Dynamic Handler Special Cases

	3.2Static Notification
	3.2.1Handler Decorator
	3.2.1.1Decorator Syntax
	3.2.1.2Decorator Semantics

	3.2.2Specially-named Notification Handlers
	3.2.3Attribute-specific Handler Signatures
	3.2.4General Static Handler Signatures

	3.3Trait Events
	3.4Undefined Object

	4Deferring Trait Definitions
	4.1DelegatesTo
	4.2PrototypedFrom
	4.3Keyword Parameters
	4.3.1Prefix Keyword
	4.3.2Listenable Keyword

	4.4Notification with Deferring

	5Custom Traits
	5.1Trait Subclassing
	5.1.1Defining a Trait Type
	5.1.2Defining a Trait Property
	5.1.3Other TraitType Members

	5.2The Trait() Factory Function
	5.2.1Trait () Parameters
	5.2.1.1Type
	5.2.1.2Constant Value

	5.2.2Mapped Traits

	5.3Trait Handlers
	5.3.1TraitPrefixList
	5.3.2TraitPrefixMap

	5.4Custom Trait Handlers
	5.4.1Example Custom Trait Handler

	6Advanced Topics
	6.1Initialization and Validation Revisited
	6.1.1Dynamic Initialization
	6.1.2Overriding Default Values in a Subclass
	6.1.3Reusing Trait Definitions
	6.1.4Trait Attribute Definition Strategies
	6.1.4.1Trait Attribute Name Wildcard
	6.1.4.1.1Wildcard Rules
	6.1.4.1.2Disallow Object
	6.1.4.1.3HasTraits Subclasses
	6.1.4.1.4HasStrictTraits
	6.1.4.1.5HasPrivateTraits

	6.1.4.2Per-Object Trait Attributes

	6.1.5Type-Checked Methods

	6.2Interfaces
	6.2.1Defining an Interface
	6.2.2Implementing an Interface
	6.2.3Using Interfaces

	6.3Adaptation
	6.3.1Defining Adapters
	6.3.1.1Subclassing Adapter
	6.3.1.2Creating an Adapter from Scratch
	6.3.1.3Declaring a Class as an Adapter Externally

	6.3.2Using Adapters
	6.3.3Controlling Adaptation

	6.4Property Traits
	6.4.1Property Factory Function
	6.4.2Caching a Property Value

	6.5Persistence
	6.5.1Pickling HasTraits Objects
	6.5.2Predefined Transient Traits
	6.5.3Overriding __getstate__()
	6.5.4Unpickling HasTraits Objects
	6.5.5Overriding __setstate__()

	6.6Useful Methods on HasTraits
	6.6.1add_trait()
	6.6.2clone_traits()
	6.6.3set()
	6.6.4add_class_trait()

	6.7Performance Considerations of Traits

